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Abstract Title:  

Role of scavenger receptor MARCO in particle uptake and lung inflammation 

Chairperson: Andrij Holian, PhD 

 

Alveolar macrophages (AM) form the first line of defense against chronic inflammation 
caused by occupational exposure to environmental particulates such as crystalline silica 
(CSiO2). The chronic inflammatory process triggered by CSiO2 is known to culminate 
into a fibrotic response called silicosis in the human lungs. Previous studies have 
indicated the role of membrane glycoproteins called scavenger receptors in binding of 
environmental particles. The scavenger receptors are classified into different classes (A-
H) based on their structure and function. Class A scavenger receptors are critical in 
uptake of variety of ligands such as bacteria, acetylated lipoproteins and are typically 
found on macrophages, dendritic and epithelial cells. One of the members of this family 
is Macrophage receptor with collagenous structure (MARCO). Recent studies have 
focused on analyzing the interaction between MARCO and inorganic particles such as 
CSiO2 and titanium dioxide (TiO2). Both in vivo and in vitro binding studies have 
identified MARCO as a key receptor in CSiO2 uptake and subsequent cytotoxicity in AM 
from C57Bl/6 mice. Further in vitro studies using a transfected cell line revealed that the 
100 amino acid residues long cysteine-rich (SRCR) domain at the C-terminal end of 
MARCO is required for binding of inorganic particles such as CSiO2, TiO2 and 
amorphous silica (ASiO2). Moreover, individual particles bind to SRCR domain of 
MARCO with unique differences and have varying requirements with respect to need for 
divalent cations. Our studies demonstrate that physiological absence of MARCO in 
C57Bl/6 mice leads to a more robust inflammatory response following CSiO2 exposure as 
compared to wild-type mice. The results suggest that diminished clearance of CSiO2 
particles from the MARCO-/- lungs exacerbates the lung inflammation. These findings 
demonstrate that the involvement of different regions of SRCR domain may distinguish 
downstream events following particle binding. Taken together, these data establish the 
role of MARCO in uptake of various inorganic particles and elucidate the protective role 
of MARCO in CSiO2-induced lung inflammation. 
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INTRODUCTION 

1.1. SILICOSIS 

Silica is one of the most common minerals found in the earth’s crust (Rosenman 

et al., 2003). It is found in sand, rocks such as granite, sandstone and in metal quarries. 

Exposure to silica occurs during occupations such as construction, mining, sandblasting, 

grinding, drilling etc. Silica is present in nature in two forms: crystalline and non-

crystalline (amorphous). Both differ significantly in the pulmonary injury they cause 

when inhaled. Crystalline silica (CSiO2) is a fibrogenic agent capable of inducing 

progressive inflammation, fibroblast proliferation and collagen deposition resulting in the 

development of pulmonary fibrosis known as silicosis (Craighead et al., 1988; Green and 

Vallyathan, 1996). The clinical symptoms of silicosis cannot be seen until many years 

after CSiO2 exposure. Early symptoms include, shortness of breath during exercise, 

chronic dry cough, fatigue and bluish skin, while diminished lung and vital capacity are 

later symptoms. Histomorphologically, silicosis is characterized by thickening of the 

alveolar interstitium, formation of hyalinized nodules, and collagen deposition resulting 

in the formation of silicotic nodules in the lung parenchyma (Huaux, 2007). These 

nodules are comprised of collagenous tissue arranged in a concentric pattern, with CSiO2 

particles sequestered in the middle of the nodule with macrophages and fibroblasts 

present on the periphery. Eventually the nodules coalesce leading to destruction and 

scarring of normal lung tissue.  

Currently, no treatment exists for silicosis. Most treatments used are aimed at 

relieving the pain and discomfort due to the symptoms and do not reverse or inhibit 

disease progression. Patients are administered oxygen to help increase blood oxygenation 
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and bronchodilators to aid breathing. In addition, immunosuppressive drugs such as 

corticosteroids may be used in an attempt to suppress the progressive inflammation that is 

characteristic of the development of silicosis. At present, the only life-saving therapy is a 

lung transplant from a healthy donor. 

1.2. OTHER SILICA-INDUCED DISEASES 

Exposure to CSiO2 may also result in or contribute to other pulmonary diseases 

including chronic obstructive pulmonary disease (COPD) and increased susceptibility to 

tuberculosis (Craighead et al., 1988; Hnizdo et al., 1994). The American thoracic society 

defines COPD as “disease state characterized by the presence of airflow obstruction due 

to chronic bronchitis or emphysema” (1995). The current paradigm is that CSiO2 causes 

chronic lung inflammation in small airways, a characteristic feature of bronchitis and 

destruction of lung parenchyma or emphysema, together causing COPD (Hnizdo, 1992; 

Hnizdo and Vallyathan, 2003). Although the mechanistic details are unknown, there are 

several potential mechanisms by which CSiO2 may initiate cell injury leading to COPD. 

These include cytotoxicity and secretion of proinflammatory factors such as cytokines, 

chemokines and growth factors (Hamilton et al., 2008; Vanhee et al., 1995). With regard 

to increased susceptibility to tuberculosis, CSiO2-induced decrease in cell-mediated 

immunity and adverse effects on sensitivity of antigen presenting cells (APCs) 

(macrophages and dendritic cells) are known to be major contributors (Beamer and 

Holian, 2008; Watanabe et al., 1987). 

Increasing evidence from epidemiological and animal studies has implicated 

CSiO2 exposure as a potential risk factor in development of autoimmune diseases such as 

systemic sclerosis, rheumatoid arthritis and systemic lupus erythematosus (Brown et al., 
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2003; Haustein and Anderegg, 1998). The etiology of CSiO2-induced autoimmune 

diseases is unknown. However, it has been hypothesized that CSiO2-induced apoptosis 

exacerbates autoimmune responses by exposing particular autoantigens, expressed on 

surface of dying cells, to the immune system (Pfau et al., 2004a).  Moreover, CSiO2 

exposure may lead to impaired clearance of this dead cell debris due to overwhelmed 

clearance mechanisms in the lung or adverse effects on macrophage function. The 

impaired clearance mechanism may be another potential risk factor for development of 

autoimmune diseases (Cohen et al., 2002). Also, CSiO2 is known to act on adaptive 

immunity by serving as an adjuvant for stimulating T cells and causes decreases in the 

relative number and function of regulatory T cells (Brown et al., 2004; Wu et al., 2006).   

Finally, CSiO2 causes a variety of respiratory and systemic autoimmune diseases. 

Different rates and volumes of respiration, personal characteristics, genetic susceptibility, 

and compromised host defenses may all play a role in determining why some people may 

develop one or the other CSiO2 associated diseases. 

1.3. INHALATION TOXICITY FOLLOWING OCCUPATIONAL EXPOSURE 

TO ASiO2 AND TiO2 

In contrast, exposure to amorphous silica (ASiO2) has been shown to cause only 

self-limited reversible pulmonary inflammation (Warheit et al., 1995; Wilson et al., 

1979).  Epidemiological studies demonstrated that workers with long-term exposure to 

amorphous silica (ASiO2) did not show evidence of silicosis or COPD (Choudat et al., 

1990; Wilson et al., 1979). Another inorganic particle, titanium dioxide (TiO2) that has 

been widely used in many industrial applications, as well as in medical and dental 

prosthesis triggers similar biological events as ASiO2. While a few studies have shown 
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that TiO2 exposure in murine models leads to a transient inflammatory response in the 

lung, the exposure does not progress to fibrosis (Lardot et al., 1998; Lindenschmidt et al., 

1990). Both these particles are non-toxic and are not reported to be associated with 

silicosis, COPD or autoimmune diseases. 

1.3.1. Unique Bioactivity of CSiO2 

All three inorganic particles, CSiO2, ASiO2 and TiO2 are recognized by the 

macrophages and induce inflammation by releasing cytokines and growth factors 

(Driscoll et al., 1990; Lindenschmidt et al., 1990). However, only CSiO2 exposure leads 

to persistent inflammation eventually leading to fibrosis while, ASiO2 or TiO2 exposure 

causes reversible inflammatory response. This contrasting observation raises an important 

question as to why certain inorganic particles (e.g., CSiO2) induce a fibrotic response in 

the lung while other inorganic particles (e.g. ASiO2 and TiO2) do not.  In this regard, the 

CSiO2-induced persistent toxicity towards AM as compared to the non-toxic nature of 

TiO2 and ASiO2, has been speculated to be an important factor (Thakur et al., 2008). 

Another long-standing paradigm in the field is that rate and extent of particle clearance 

from the lung is an important step in development of silicosis. In contrast to CSiO2, 

numerous studies have found ASiO2 and TiO2 to be cleared faster and more efficiently 

from the lungs of exposed animals (Arts et al., 2007; Oghiso et al., 1992). Also, the 

physicochemical properties of particles have been speculated to be an important factor in 

both cytotoxicity and clearance from the lung (Shi et al., 1989; Thakur et al., 2008). The 

negative surface charge of the particle as well as the distribution (order) of surface charge 

may play an important role in the unique biological activity and fibrogenic potential of 

these particles. It can be further speculated that the apparent paradox in the fibrotic 
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outcome in response to these inorganic particles may, at least in part, be related to 

differences in binding of these particles to cellular receptors and the signaling events 

triggered by these particle-receptor interactions. 

1.4. PULMONARY MACROPHAGES 

Macrophages form the first line defense against numerous environmental 

challenges involving pathogens, as well as inhaled particles, and function as an important 

link between the innate and adaptive immune responses (Gordon, 2007). Macrophages 

are derived from peripheral blood monocytes, which in turn are derived from bone 

marrow pluripotent stem cells. Macrophages are abundant in every tissue in the body and 

display marked heterogeneity in phenotype specific to tissue, possibly due to local 

interaction with other cell types in the tissue (Gordon, 2007).  

Resident pulmonary macrophage populations have been divided into two major 

compartments: alveolar and interstitial, each expressing unique phenotypic markers 

(Laskin et al., 2001; Migliaccio et al., 2005). Under normal physiological conditions, the 

immune cell population in the airway or alveolar spaces is comprised mainly of AM (80-

90 %) (Bowden, 1976; Devlin et al., 1994). Although the primary function of AM is 

phagocytosis, it is also known to play an important role in regulating inflammatory 

responses (Bowden, 1987). Murine AM are classified into unique subpopulations by their 

activation pathway and resulting cytokine secretion (Mosser, 2003). To maintain immune 

homeostasis a fraction AM release immunosuppressive factors such as IL-10, IL-4, IL-13 

and TGFβ (Barbarin et al., 2004; Hancock et al., 1998). On the other hand, immuno-

enhancing AM release proinflammatory factors such as TNF-∝, IL-1β and IL-6 in 
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response to triggers such as CSiO2. Also, AM are known to function as antigen 

presenting cells (APCs) and hence are important for regulation of adaptive immunity.  

With regard to human AM, at least two distinct subpopulations have been 

reported, one being immunosuppressive (RFD+1/RFD+7) and another small population 

function as immune activators (RFD+1/RFD-7) (Spiteri et al., 1992b). Both 

subpopulations differ in receptor expression and functional activity (Spiteri et al., 1992b). 

The immunosuppressive RFD+1/RFD+7 are good phagocytic cells, but poor APCs and 

immunoenhancing RFD+1/ RFD-7 are poor phagocytic cells and good APCs (Spiteri et 

al., 1992a) and can stimulate a T cell response, which could lead to an increased 

inflammatory response (Spiteri and Poulter, 1991). Moreover, the RFD+1/RFD+7 AM 

can suppress the RFD+1/RFD-7 AM-stimulated immune response. Consequently, the 

inflammatory status of a subject is extremely sensitive to the fine balance between these 

two subpopulations.  Therefore, given the importance of balance between murine as well 

as human AM subpopulations, perturbation of such balance may have pronounced effect 

on disease etiology. 

Another macrophage phenotype located in the connective tissue of the lungs is 

known as the interstitial macrophage (Bowden, 1976). With respect to morphology and 

functions alveolar and interstitial macrophages (IM) have striking differences. 

Morphologically AM are described as large mature cells while IM are smaller and 

resemble peripheral blood monocytes (Bowden, 1987; Zwilling et al., 1982).  Also, AM 

are reported to have higher phagocytic ability as compared with the IM. Futhermore AM 

were effective in producing cytokines such as TNF-α and IFN-γ while IM produced 

higher levels of IL-1β and IL-6 and show increased MHC-II expression along with 
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greater antigen presenting activity (Franke-Ullmann et al., 1996). Little data exists 

regarding the role of IM in particle-induced diseases, when compared with AM. 

Nonetheless, both AM and IM play important roles in CSiO2-induced pulmonary fibrosis. 

Alveolar macrophages (AM) are known to play a role in phagocytosis and clearance of 

CSiO2 along with their well-established role in the production of cytokines and fibrogenic 

factors (Lehnert et al., 1989). While IM are responsible for trapping the CSiO2 in the 

interstitium and stimulating interstitial lymphocytes and fibroblasts to mount an immune 

response and promote collagen deposition (Adamson et al., 1991).  

1.4.1. Pulmonary macrophages in silicosis 

The lung has direct contact with the environment and is constantly exposed to a 

variety of pathogens and harmful particles. Considering the surface area of the lung and 

the volume of potentially harmful air inspired on a daily basis, it is remarkable that so 

little inflammation is observed under normal physiological conditions. Several defense 

mechanisms exist throughout the respiratory tract aimed at keeping the mucosal surfaces 

free from particles deposited by inhalation. Large inhaled particles > 1.0 µm are trapped 

by the surfactant proteins and the mucous lining in the trachea and then propelled out of 

the lung by the continuous beating of ciliated cells lining the mucosal surface. In contrast, 

small particles including respirable CSiO2 <1.0 µm are deposited in the alveolar regions 

of the lung and are believed to have higher fibrogenic potential.  

1.4.1.1. Role of pulmonary macrophages in clearance of CSiO2 particles 

The cells that are important in initial interaction between these fine particles and 

the lung are alveolar macrophages (AM). Alveolar macrophages are attracted to the site 

of particle deposition by particle-activated complement-dependent chemotactic factors on 
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the alveolar surface (Warheit et al., 1988). Once recognized and phagocytosed by AM, 

CSiO2 particles are cleared out of the lung by the mucociliary pathway or they are 

translocated to the interstitium and lymphatic system. Successful clearance of particles 

from the deep lung by AM results in nominal release of proinflammatory factors and 

minimal cell injury and inflammation (Brody et al., 1982). Anything that interferes with 

this chain of events can lead to prolonged interaction of CSiO2 with pulmonary epithelial 

cells and other immune cells resulting in increased cell injury and translocation of CSiO2 

to the interstitium. For example, in the case of heavy and continued exposure, as in a 

coalmine, CSiO2 is not cleared from the lungs due to overwhelmed clearance 

mechanisms. High concentrations of particles in the lung leads to a phenomenon known 

as “particle overload” resulting in translocation of particle laden AM to extrapulmonary 

sites such as the lymph nodes and interstitial space (Oberdorster, 1995). Once the 

particles are in the interstitium, they cannot be easily removed and subsequently interact 

with fibroblasts and epithelial cells that are in close proximity (Adamson et al., 1992). 

Alternatively, the CSiO2 is phagocytosed by interstitial macrophages and the activated 

interstitial macrophages secrete proinflammatory cytokine and growth factors, which 

stimulate fibroblasts.  The stimulated fibroblasts and epithelial cells secrete fibrogenic 

growth factors and cytokines that contribute to development of a persistent fibrotic 

condition of the lung (Adamson et al., 1991).  

1.4.1.2. CSiO2-induced apoptosis of AM and release of inflammatory cytokines 

The current paradigm in the field is that, upon inhalation of CSiO2, AM engulf 

particles and make an effort to clear CSiO2 particles from the lungs. As described 

previously, under conditions of continued exposure, overwhelmed clearance mechanisms 
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do not remove the particles from the lung. Not only does the uncleared CSiO2 migrate to 

the interstitium, but the particles also interact with the resident AM for prolonged periods 

of time. Some of those AM get activated and secrete proinflammatory cytokines while a 

fraction of AM undergo apoptosis due to pronounced cytotoxic effects of CSiO2 (Huaux, 

2007; Iyer and Holian, 1997). Some studies have suggested that the immunosuppressive 

AM population, described earlier, specifically undergoes apoptosis (Iyer and Holian, 

1997). This apoptotic material and free CSiO2 may then be re-engulfed by other AM that 

then release mediators like oxygen radicals, proteases and proinflammatory cytokines or 

undergo apoptosis (Beamer and Holian, 2005b; Rimal et al., 2005). Repeated cycles of 

engulfment, apoptosis and release of inflammatory mediators may prolong inflammation 

and contribute to silicosis (Rimal et al., 2005; Srivastava et al., 2002). In contrast, TiO2, 

neither induces macrophage apoptosis nor pulmonary fibrosis (Thibodeau et al., 2003). 

Therefore, the fibrogenic potential of a particle is thought to correlate with its ability to 

induce AM apoptosis (Iyer et al., 1996a; Rimal et al., 2005).  

Some of CSiO2-exposed AM secrete inflammatory factors as cytokines, proteases 

and reactive oxygen species. Other activated AM interact with immune and non-immune 

cells and contribute in the process of recruiting neutrophils, dendritic cells and 

lymphocytes. Among the cytokines released by AM, TNF-α and IL-1β have been 

reported to play a pivotal role in development of silicosis (Shi et al., 1998). Most 

compelling is the evidence demonstrating anti-TNF-α antibodies or soluble TNF 

receptors and IL-1β antagonists attenuate CSiO2-induced murine pulmonary fibrosis 

(Piguet et al., 1990; Piguet and Vesin, 1994; Piguet et al., 1993). A variety of 

inflammatory and immune responses are stimulated by TNF-α and IL-1β including 
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lymphocyte proliferation, oxidative bursts and degranulation of inflammatory cells 

(Herseth et al., 2008; Shi et al., 1998). Furthermore, analysis of TNF-α and IL-1β levels 

in the lavage fluid from CSiO2-treated mice demonstrated an immediate increase in levels 

that are thought to be major contributors in the later development of inflammation and 

fibrosis (Driscoll et al., 1995). Increased levels of transforming growth factor (TGF-β) 

are found in CSiO2-induced granuloma. It is mainly produced by AM and epithelial cells 

and has multiple role in fibrogenesis such as chemoattractant for neutrophils and 

mitogenic stimulus for fibroblasts (Jagirdar et al., 1996). 

1.5. SCAVENGER RECEPTORS 

Although ample evidence supports the notion that upon CSiO2 exposure AM play 

central role in particle-induced immune effects, the molecular details of the initial 

interaction of particles and macrophages are not well-studied. AM express a myriad of 

pattern recognition receptors such as Toll like receptors, C-type lectin and β2 integrin and 

scavenger receptors (SR) on their surface to recognize and bind environmental pathogens 

and particles (Platt and Gordon, 2001). The scavenger receptors recognize a number of 

ligands such as, gram positive and gram negative bacteria, lipopolysaccharide (LPS), 

lipotechoic acid, polynucleotides and apoptotic eukaryotic cells (Elomaa et al., 1995; 

Kunjathoor et al., 2002; van der Laan et al., 1999). Members of SR family display broad 

ligand-binding properties overlapping between members of the family.  

Mainly expressed on macrophages and dendritic cells, SR are also found on non-

immune cells like epithelial cells, endothelial cells and hepatocytes (Murphy et al., 2005). 

The SR are divided into eight different classes (A-H) based on structure and function 

(Classes A-H) (Murphy et al., 2005). Two members of Class A family of scavenger 
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receptors, namely, scavenger receptor A (SRA I/II) and macrophage receptor with 

collagenous structure (MARCO) have been implicated in environmental particle binding 

(Hamilton et al., 2006; Iyer et al., 1996b). Therefore, this project focused on 

understanding the contribution of SRA I/II and mainly MARCO in CSiO2 binding. 

1.5.1. Class A scavenger receptor family members 

The Class A scavenger receptor (SR) are expressed predominantly on 

macrophages and dendritic cells, mast cells, epithelial cells and endothelial cells (Brown 

et al., 2007; Murphy et al., 2005). Five members have been identified to date namely: 

SRA (I, II, III), MARCO, CSR1 (Cellular Stress Response 1), SRCL (SR with C-type 

lectin) (Moore and Freeman, 2006) and SCARA5 (Class A SR 5) (Jiang et al., 2006). 

Similar to other classes of SR, the class A family of SR binds a wide variety of ligands 

including acetylated proteins, polyribonucleotides, polysaccharides, environmental 

particles, and play a significant role in host-defense. Examination of the SR ligands 

illustrates that they are polyanionic in nature, although many polyanions do not bind the 

SR (Platt and Gordon, 1998). The ligand binding capacity of Class A SR is broad enough 

to question their biological specificity. However, closer examination suggests that 

specificity of their binding is likely to be determined not only by the negative charge on 

the ligand, but also by many other factors. These may include ligand structure, surface 

charge distribution on the ligand, the relative affinity between the SR for a particular 

ligand and availability and expression of various SR.  

A prototypic example of Class A SR family, SR-A I/II comprises types I and II 

and non functional intracellular, type III, polypeptides (Murphy et al., 2005). SRA I/II is 

trimeric protein and each molecule is composed of six regions: a relatively short N-
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terminal cytoplasmic domain, a transmembrane domain and its extracellular domain is 

comprised of a spacer, α-helical coiled-coil, collagenous and a cysteine rich C-terminal 

domain (Figure 1) (Matsumoto et al., 1990). Despite the extensive similarity between the 

structures of SR polypeptides, some of the polypeptides lack one or more of the above 

mentioned domains. Some of the central structural features of SR include their trimeric 

nature, a collagenous domain of varying length in the extracellular region and a short N-

terminal cytoplasmic domain approximately 40-60 amino acid long (Figure 1).  

Furthermore, three members of Class A SR, including SRA I, MARCO and 

SCARA5 belong to a family of a large group of receptors called SR Cysteine Rich 

(SRCR) super family that have an evolutionarily conserved, SRCR domain of 

approximately 100-110 amino acid residues (Jiang et al., 2006; Sarrias et al., 2004). A 

large number of cell surface proteins with diverse functions possess the SRCR domain as 

an integral part of their structure. However, at present, a common function for the SRCR 

domain has not been determined. The known functions of the SRCR domain include 

ligand binding and is also implicated in immune defense mechanisms (Sarrias et al., 

2004). Further studies need to be conducted to determine the role of SRCR domain in 

determining the specificity of ligand binding (Figure 1). With regard to this study,  
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Figure 1: Schematic of Class A scavenger receptors involved in CSiO2 binding.  

The functional domains and proposed particle binding sites are indicated for SRA I, SRA 

II and MARCO.  
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because the ligand binding SRCR domain is found in both SRA I and MARCO receptors, 

studies were conducted to determine the role of SRCR domain in particle binding. 

1.5.2. Role of Scavenger Receptor Class A in binding and signaling by environmental 

          particles 

During the 1990’s, Resnick et. al. suggested that crocidolite asbestos, an 

environmental particle which causes asbestosis and mesothelioma, bound efficiently to 

recombinant SR (SR-A I and II) (Resnick et al., 1993). The binding of crocidolite 

asbestos to these receptors was efficiently inhibited by the non-specific SR ligands such 

as polyinosinic acid (poly I) and polyguanylic acid (poly G) (Resnick et al., 1993). 

Additional studies identified other particles (viz., TiO2, CSiO2, iron oxide and diesel 

exhaust particles) as possible ligands for SR (Iyer et al., 1996a; Palecanda et al., 1999b). 

Taken together, these studies suggested a role for the Class A family of scavenger 

receptors SRA (I/II) and MARCO in particle recognition and uptake. 

1.5.2.1. SRA I/II 

Scavenger receptor A (SRA-I/II) is expressed primarily on macrophages and has 

been extensively studied in the context of atherosclerosis and was initially known as a 

macrophage receptor for oxidatively modified lipoprotein (Dhaliwal and Steinbrecher, 

1999). The first direct evidence that SRA-I/II plays a role in environmental particle 

induced signaling emerged when Chao et al. (2001) reported that CSiO2-induced caspase 

activation and apoptosis in a murine cell line, which was inhibited by 2F8, a monoclonal 

antibody to SRA I/II. In contrast to CSiO2, titanium dioxide (TiO2)-treated CHO cells 

expressing murine SRA I/II did not undergo apoptosis (Hamilton et al., 2000). These 
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studies highlight the contrasting apoptotic outcome resulting from exposure to two 

chemically similar particles. The binding site of CSiO2 on SRA I/II has not been 

specifically identified. However, considering the negative surface charge of CSiO2, the 

positively charged amino acids in the SRCR domain of SRA I are speculated to be 

responsible for particle binding (Figure 1). Though the SRA II polypeptide lacks the 

SRCR domain, a group of positively charged lysines are present in the collagenous 

domain of SRA II which have been found to be important for ligand binding (Figure 1) 

(Haberland et al., 1984). Further studies focusing on identifying the amino acids 

responsible for CSiO2 and TiO2 binding would contribute to better understanding of the 

process of particle recognition. 

Recent in vivo studies have provided further support for the role of SR-A I/II on 

AM in the innate immune response against inhaled environmental particles. SRA I/II-/- 

mice showed an augmented inflammatory response to CSiO2 and TiO2, which included 

increased levels of proinflammatory cytokines like TNF-α, and mRNA levels of 

chemokine CXCL3 and significantly increased neutrophilia (Arredouani et al., 2006; 

Beamer and Holian, 2005b). The exact mechanistic details of the role of SRA I/II in 

CSiO2 induced apoptosis and cytokine signaling is as yet unknown (Figure 1). While 

these results identified the role of SRA I/II in CSiO2 binding and subsequent cytotoxicity, 

the studies did not examine the relative contribution of SRA I/II in CSiO2 binding in 

presence of another Class A scavenger receptor, MARCO. 

1.5.2.2. MARCO 

Macrophage receptor with collagenous structure (MARCO) has significant 

structural similarity with SRA I except that it lacks the α-helical coiled-coil domain in 
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the extracellular region (Figure 1) (Elomaa et al., 1995). MARCO is expressed mainly on 

AM, macrophages in the marginal zone of spleen and lymph nodes and dendritic cells.  

Both SRA I/II and MARCO exhibit overlapping and extensive ligand recognition 

capacity (Sarrias et al., 2004). MARCO also binds a variety of ligands such as AcLDL, 

gram positive and gram negative bacteria, LPS, and TiO2 (Arredouani et al., 2006; 

Elomaa et al., 1998).  

Structurally, MARCO receptor is a 210 kDA integral trimeric transmembrane 

protein, in which each of the three subunits (54 kDA) are composed of short 50 amino 

acid NH2-terminal intracellular domain, a small transmembrane domain that spans the 

cell membrane and an extracellular portion composed of a 75 amino acid spacer domain, 

a 270 amino acid collagenous domain and the 100 amino acid C-terminal cysteine rich 

domain (SRCR) domain (Figure 2) (Elomaa et al., 1998). The SRCR domain of MARCO 

has been found to play a role in ligand binding and cell adhesion (Brannstrom et al., 

2002b). Recently, a positively charged arginine based “RXR” motif in the SRCR domain 

of MARCO has been reported to mediate the binding of gram positive and gram negative 

bacteria (Brannstrom et al., 2002b). This study proposes to analyze the role of the “RXR” 

motif in binding of negatively charged environmental particles. Additionally, to account 

for the full complexity of binding behavior of MARCO, understanding the role of all 

other structural and physical factors, of the particles, such as size and surface charge 

distribution is of importance. 
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Figure 2: Schematic representation of structure of MARCO 

(modified from J. E. Murphy et. al. Atherosclerosis 2005, 1-14)  
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Mechanistically, not much is known with respect to the signaling events triggered 

following particle interaction with MARCO (Figure 1). However, similar to SRA I/II-/- 

mice, MARCO-/- mice showed a dramatic increase in polymorphonuclear leukocyte 

trafficking into the lungs, increased levels of TNF-α, and mRNA levels of chemokine 

CXCL3 following TiO2 exposure (Arredouani et al., 2006). Although the direct link 

between MARCO and enhanced neutrophilia remains uncertain, it has been attributed to 

increased expression of chemokine CXCL3, a potent neutrophil chemoattractant 

(Arredouani et al., 2006). These results suggested a protective role of MARCO in the 

lungs against the CSiO2 exposure.  

1.6. SPECIFIC AIMS 

This project is mainly focused on identifying the role of scavenger receptor MARCO in 

CSiO2 binding and cytotoxicity. Alveolar macrophages (AM) from both SRA I/II and 

MARCO single and double knockout mice were used to elucidate the relative 

contribution of SRA I/II and MARCO in CSiO2 binding and cytotoxicity. Further in vitro 

studies using human MARCO transfected Chinese hamster ovary (CHO) cells examined 

the differential binding of toxic CSiO2 and non-toxic TiO2 and ASiO2 to MARCO. 

Understanding the differences in binding patterns of these inorganic particles may help 

explain the varying signaling events triggered by inorganic particles, despite binding to a 

common receptor, MARCO. Additionally, by using MARCO-/- mice, the role of MARCO 

in CSiO2 induced acute and chronic inflammation was analyzed. The results from this 

study will help understand the molecular details involved in the initial macrophage-

particle interaction and examine the implications of this interaction on subsequent disease 
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process. The role of MARCO in CSiO2 induced disease pathology was examined using 

following three specific aims: 

 

Specific Aim I:  

To characterize the role of MARCO in CSiO2 binding and alveolar macrophage 

cytotoxicity (Chapter 1 and Appendix A) 

 

Specific Aim II:  

To identify the particle-binding domain of MARCO and to investigate whether the 

difference in cytotoxicity of various particles may be related to their differential binding 

to MARCO (Chapter 2) 

 

Specific Aim III:  

To characterize the role of MARCO in CSiO2 induced pulmonary inflammation  (Chapter 

3) 
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CHAPTER ONE 

MARCO MEDIATES CRYSTALLINE SILICA UPTAKE AND TOXICITY IN 

ALVEOLAR MACROPHAGES FROM C57BL/6 MICE 

 

ABSTRACT 

Scavenger receptors (SR) expressed on the surface of the macrophage, appear to 

be responsible for crystalline silica (CSiO2) uptake and cell death signaling in the 

macrophages. The purpose of this study was to investigate relative contribution of 

macrophage receptor with collagenous structure (MARCO) and scavenger receptor A 

(SRA I/II) in CSiO2 binding, using various SR null mice. The findings demonstrated that 

MARCO was the critical SR involved in CSiO2 uptake and cytotoxicity in the primary 

alveolar macrophages (AM) from C57BL/6 mice, as there was no particle uptake or cell 

death in the absence of this SR. The level of MARCO expression on AM changed 

significantly with the absence of other SR, and CSiO2 uptake was proportional to cell 

surface MARCO expression. In addition, CSiO2 uptake and cytotoxicity were completely 

blocked by an anti-mouse MARCO antibody. Transfection of Chinese hamster ovary 

cells with human MARCO further supported these conclusions, as CSiO2 particles bound 

to and initiated apoptosis in the MARCO-transfected cells. Inability of the MARCO-/- 

AM in binding CSiO2 resulted in decreased ability of AM in modifying the antigen-

induce T cell stimulation, a characteristic of MARCO+ AM. Taken together, these results 

indicate MARCO is the primary AM receptor interacting with CSiO2, depending on 

mouse strain and level of constitutive expression. 
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2.1. INTRODUCTION 

Inhaled crystalline silica (CSiO2) particles are known initiator of several human 

pathologies including silicosis, autoimmune disorders and possible even lung cancer 

(Peretz et al., 2006). The earliest contact with inhaled crystalline silica (CSiO2) occurs 

when alveolar macrophages (AM) recognize and engulf CSiO2 particles. This can lead to 

cell death in a fraction of the exposed cells, which may be the initial step in disease 

process. Scavenger receptors (SR) on the surface of the AM are one possible mechanism 

for uptake and cell death signaling in the AM (Gough and Gordon, 2000; Kobzik, 1995)  

Scavenger receptors (SR) are transmembrane glycoproteins found on 

macrophages, endothelial cells, and smooth muscle cells that bind to a number of ligands 

including gram-negative bacteria, apoptotic cells, oxidized low-density lipoproteins and 

polyinosinic acid to name just a few (Gough and Gordon, 2000).  The SR are divided into 

several different classes based on structure and function and they all bind a broad range 

of ligands with polyanionic surface characteristics (Murphy et al., 2005).   The exact 

function of SR is still being determined, but they are believed to be an important feature 

of the innate immune response and they are generally upregulated in response to bacterial 

infection (Hampton et al., 1991; Haworth et al., 1997).  Due to the promiscuous nature of 

these receptors, multiple functions have been suggested including, but not limited to, 

endocytosis followed by receptor recycling, transcytosis, intracellular signaling, and 

uptake of particles with polyanionic surface characteristics (Murphy et al., 2005; 

Palecanda and Kobzik, 2001; Platt and Gordon, 2001). 

Class A SR include MARCO, three splice variants of SR-A (I, II, III), and SRCL 

and recently discovered SCARA 5 (Arredouani and Kobzik, 2004; Murphy et al., 2005; 

Nakamura et al., 2001).  SRA I/II has been shown to be involved with the uptake of 
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titanium dioxide (TiO2), CSiO2, diesel particles, and latex beads in AM (Kobzik, 1995).  

In addition, CSiO2-induced cytotoxicity was demonstrated following the transfection of 

Chinese hamster ovary (CHO) cells with SRA I/II (Hamilton et al., 2000).  In this 

instance, TiO2 was not toxic to the transfected CHO cells indicating a specific toxic 

response to CSiO2 particles, which was inhibited by known antagonists of SRA I/II 

(Hamilton et al., 2000).  

Similarly, MARCO has been identified as the main binding receptor for 

unopsonized particles and bacteria on human AM using MARCO-transfected COS cells 

(Arredouani et al., 2005; Palecanda et al., 1999a), and the presence of MARCO may be 

the frontline defense for pneumococcal pneumonia, and clearance of inhaled particles 

(Arredouani et al., 2004).   Despite the similarity in structure and function between 

MARCO and SRA I/II, there is evidence that their regulation and signaling properties 

may be different.  This is based on work with MARCO and SRA I/II null mice, where 

significant differences in peritoneal macrophage IL-12 production were observed 

following LPS and IFNγ stimulation (Jozefowski et al., 2005).  In additional findings, 

MARCO expression was increased by Th1 polarizing factors and decreased by Th2 

polarizing agents.  This pattern was reversed for SRA I/II expression indicating that these 

proteins are differentially regulated (Jozefowski et al., 2005).  Mouse strain differences in 

MARCO and SRA I/II expression have also been observed, with MARCO being the 

constitutively expressed SR in the C57BL/6 strain (Palecanda and Kobzik, 2001; Su et 

al., 2001).  In humans, the expression of MARCO under normal circumstances is 

relatively low compared to SRA I/II, but it can be induced by a variety of stimulants 

including the presence of bacteria (Jozefowski et al., 2005). 
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 The study was conducted to determine the relative contribution of the two SR 

(MARCO and SRA I/II) on the uptake and toxicity of CSiO2 particles by the murine AM, 

using single and double null mice on the C57BL/6 background. The primary hypothesis 

of this work is that MARCO mediates CSiO2 uptake and toxicity in the C57Bl/6 mouse 

due to the fact that MARCO is constitutively expressed SR on the AM. 

 

2.2. MATERIALS AND METHODS 

Mice 

Breeding pairs of C57Bl/6 mice were originally purchased from The Jackson 

Laboratory (Bar harbor, ME, USA); while breeding pairs of SRAI/II-/- and MARCO-/- 

mice on C57Bl/6 background were kindly provided by Dr. Lester Kobzik (Harvard 

School of Public Health, Boston, MA). Genotyping was carried out as described 

previously (Dahl et al., 2007). All mice were maintained in the University of Montana 

specific pathogen-free (SPF) laboratory animal facility. The mice (age; 7-10 weeks) were 

maintained on an ovalbumin-free diet and given deionized water ad libitum. The 

University of Montana Institutional Animal Care and Use Committee (IACUC) approved 

all animal procedures.  

Particles 

Crystalline silica (CSiO2) (min-U-sil-5), 1 – 5 µm in diameter from Pennsylvania 

Sand Glass Corp. (Pittsburgh, PA) was acid-washed in 1M HCl at 100°C.  The CSiO2 

was then washed in sterile water three times and dried in an oven at 200°C to remove all 

water.  A stock suspension of 2.5 mg/ml in PBS was generated before each experiment.  
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The stock suspension was dispersed by sonic disruption for 1 min prior to use.   Titanium 

dioxide (TiO2) was purchased from Fisher Scientific (Cat# T315-500 Houston, TX), and 

used unprocessed.  

Alveolar Macrophage Isolation and Culture 

Mice were euthanized by a lethal injection of Euthasol, the lungs were removed 

and then lavaged with five 1.0 ml aliquots of cold phosphate buffered saline (PBS).  

Pooled cells were pelleted at 400 x g for 5 min and cell pellet was resuspended in 1 ml of 

RPMI 1640 culture media (Mediatech Inc., Herdon, VA) supplemented with 10 % fetal 

calf serum (Mediatech), antibiotics and antimycotics (Gibco, Carlsbad, CA).  Total 

lavage cells were enumerated using a Z1 Coulter Particle Counter (Beckman Coulter, 

Hialeah, FL).  The cells were adjusted to 106 per ml and added to 0.65 ml sterile 

polypropylene tubes at 500 µl/tube.  The CSiO2 suspensions were added and the cells 

were cultured in a tumbling suspension culture for 4 h at 37°C in a water-jacketed CO2 

(5%) incubator (ThermoForma, Mariette, OH).   The azide free SR antibodies included 

anti-mouse MARCO (R and D Systems, Minneapolis, MN) and anti mouse SRA I/II 

(Serotec, Raleigh, NC). 

Alveolar Macrophage Viability Assay 

Isolated alveolar macrophages were cultured in suspension (106 cells/ml) with 

varying concentrations of CSiO2 for 4 h at 37°C.  At the end of this period, culture 

supernatant was removed and mixed with 0.4% trypan blue solution (Sigma, St. Louis, 

MO).  The resulting mixture was added to a hemocytometer and the cells were examined 

by light microscopy.  Random cells were counted per sample, and cells that appeared to 
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contain blue dye were considered dead.  Data was expressed as percent of cells excluding 

trypan blue dye (percent living cells). 

Alveolar Macrophage Apoptosis Assay 

Apoptosis was determined using the Cell Death ELISA (Roche Biochemicals, 

Indianapolis, IN), and was performed according to the manufacture’s protocol.  Briefly, 

isolated alveolar macrophages were cultured in suspension (106 cells/ml) with varying 

concentrations of CSiO2 for 4 h at 37° C.  At the end of this period 100  µl of the culture 

supernatant (105 cells) was removed, washed with PBS, and the resulting cell pellet was 

lysed with the buffer provided in the kit.  The lysate was assayed in ELISA format for 

histone-bound DNA fragments.  The optical density (OD) is read at 405 nm and the 

background was subtracted out of the final results.  Data is expressed as the average OD 

± SEM.  

Determination of MARCO Expression on Alveolar Macrophages 

Immediately following the AM isolation described above, the cells were exposed 

to Fc block (1:50) for 30 min at room temp.  Anti-F480 PE (Caltag, Burlingame, CA), 

and anti-CD11c APC (BD Pharmingen), were then added to the cells at a 1:50 dilution 

along with anti-mouse MARCO FITC (Serotec, Raleigh, NC) at a 1:5 dilution, allowed to 

incubate for 30 min at room temperature with agitation 2-3 times.  Finally, AM were 

washed twice with PBS and resuspended in 0.5 ml PBS and analyzed immediately on a 

FACS Aria flow cytometer using FACs Diva software (Becton Dickinson).  Flow 

cytometric methods detected cells that were positive for MARCO FITC, while gating on 
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alveolar macrophages that were dual positive for the markers CD11c and F4-80.  Data are 

expressed as the MARCO positive percentage of CD11c/ F4-80 positive cells. 

Quantification of CSiO2 Uptake for Alveolar Macrophage 

Use of flow cytometric side scatter properties to quantify cell/particle binding and 

uptake is described elsewhere (Stringer et al., 1995). In this study, following CSiO2 

exposure for 1.5 hours, the cells were exposed to FcBlock (1:50) for 30 min at room 

temperature.  Anti-F480-PE (Caltag, Burlingame, CA) and Anti-CD11c APC (BD 

Pharmingen) were added to the cells at a 1:50 dilution and allowed to incubate for 30 min 

at room temperature, with agitation 2-3 times.  Finally, AM were washed twice with PBS 

and resuspended in 0.5 ml PBS and analyzed immediately on a FACs Aria flow 

cytometer using FACS Diva software (Becton Dickinson).  Flow cytometry analysis 

detected CSiO2 uptake into the AM by assaying for changes in forward and side scatter 

properties while gating on AM which were dual positive for the markers CD11c and F4-

80 (Crowell et al., 1992). Data are expressed as average side scatter intensity with 

arbitrary numerical units.  

Transfection of Chinese Hamster Ovary Cells 

Chinese Hamster Ovary cells (CHO K1) were cultured in Ham’s F-12 (Cellgro) 

with 10% FBS plus 100 IU/ml penicillin and 100 µg/ml streptomycin (Mediatech).  CHO 

cells were plated at 1 x 106 cells/well in a 6-well cell culture dish overnight and 

transiently transfected with 4 µg of pcDNA3.1 and hMARCO cDNA using 

Lipofectamine 2000 (Invitrogen Life Technologies) according to manufacturer’s 

protocol.  The cells were harvested and used after 36-40 h.   The cells were harvested and 
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resuspended in PBS containing 0.1 % sodium-azide and 2 % BSA were preincubated 

with or without primary mAb PLK-1 (7 µg/ml) for 15 min on ice.   The cells were then 

treated with TiO2 (25 µg/ml), or CSiO2 (150 µg/ml) and rotated at 37°C for 30 min, 

placed on ice and analyzed by flow cytometry.  Binding of particles was measured using 

increase in mean side scatter as a marker of increase in granularity of cells indicating 

uptake of CSiO2 and TiO2 particles.   

Human MARCO surface expression on transiently transfected CHO cells   

For immunofluoresence, 106 cells suspended in PBS containing 0.1 % sodium 

azide and 2 % BSA were incubated with mAb PLK-1 (7 µg/ml) and Alexa 488 

conjugated AcLDL (2.5 µg/ml) at 37°C for 30 min.  The cells were washed twice with 

PBS containing containing 0.1 % Na-azide and 2 % BSA.  After washing the antibody 

PLK-1 was detected using Alexa-488 conjugated goat anti-mouse IgG by flow cytometry.   

The human MARCO cDNA in pcDNA 3.1 and primary mAb PLK-1 (human MARCO) 

was provided by Dr. L. Kobzik (Harvard School of Public Health, Boston, MA). 

Apoptosis detection in MARCO-transfected CHO Cells 

 Briefly, 5 x 105 CHO cells were seeded in 6-well plates and incubated for 24 h. 

The cells were then transiently transfected as described above. The transfected cells were 

allowed to recover for 24 h. Cells were then treated with 50 µg/cm2 of CSiO2 for 7 h at 

37°C. The cells were scraped and centrifuged at 1500 x g for 10 min at 4°C. The pellets 

were washed once with 2 ml of PBS, then permeabilized in 1 ml of ice-cold 80% ethanol 

and left on ice for 1 h. Cells were centrifuged at 1000 x g at 4 °C for 10 min, washed 

once with 3 ml of ice-cold PBS, and stained with 50 µg/ml propidium iodide in PBS with 
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0.1% Triton X-100, 0.1 mM EDTA and 100 µg/ml RNase overnight at 4 °C. Apoptosis 

measurement (the sub-G0/G1 population) was determined on a FACs Aria Flow 

cytometer using FACs DIVA software (BD Biosciences).   

Lymphocyte Isolation and Culture 

OT-II transgenic mice on a C57BL/6 background were euthanized by a lethal 

injection of Euthasol and their spleens were removed and placed in Hank’s buffered 

saline (Invitrogen) with 2 % heat-inactivated fetal bovine serum (Mediatech) on ice. The 

spleens were ground up between two sterile frosted glass slides and filtered through 

sterile gauze into 50-ml centrifuge tubes. The cell suspension was centrifuged 200 x g for 

10 min. The nucleated cell fraction was counted by lysing the red blood cells with 

Zapaglobin reagent followed by the Z1 Coulter particle counter (Beckman Coulter, 

Hialeah, FL). The cell suspension was adjusted to 5 x 107 nucleated cells per ml in the 

media described above and the Spin SepTM murine T cell enrichment (Stem Cell 

Biotechnology, Vancouver, BC, Canada) was performed according to the manufacturer’s 

protocol. The resulting cell recovery was >96% CD 3 positive by FACS analysis. The T 

cells were suspended in RPMI 1640 culture media (Mediatech Inc) supplemented with 

antibiotics and antimycotics (Invitrogen) at 2 x 106 cells/ml.  

Antigen-presenting Cell Assay 

Following a 1 h AM suspension culture ± CSiO2 (100 µg/ml) or TiO2 (50 µg/ml), 

the AM were plated in 96-well tissue culture plates (Costar, Corning, NY) at 5 x 104 

cells/well and allowed to adhere. Ovalbumin (Sigma) antigen (10 mg/ml), or anti-CD3 

antibody (5 µg/ml) was added. This mixture was incubated 2 h at 37°C in a water-
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jacketed CO2 (5%) incubator (ThermoForma, Mariette, OH). The isolated transgenic T 

cells were added to each well at 2 x 105 cells/well. This mixture was incubated 48 h at 

37°C. After 2 days the 96-well plate was centrifuged at 1000 x g for 3 min and the 

supernatant was retrieved and stored frozen at -20°C until it could be assayed for 

cytokine levels.  

Cytokine Assays 

Culture supernatants were assayed for cytokines with commercially available kits 

according to the manufacturer’s protocol. Interferon γ (IFNγ) measurements were 

determined by using Duo-set kits (R and D Systems). Samples were diluted 1:100. 

Interleukin-13 (IL-13) measurements were determined using Duo-set kits (R & D 

Systems). Samples were diluted 1:2. Colormetric analysis was performed with the 

Spectra Max 340 plate reader (GE Healthcare) at 450 nm. Data are expressed as 

picograms/ml of retrieved culture supernatant. 

Statistical Analyses 

All one-factor experimental designs were analyzed by one-way analysis of 

variance (ANOVA) followed by Dunnett’s comparison to a single control group.  All 

two-factor experimental designs were analyzed by two-way ANOVA followed by 

selected Bonferroni’s post hoc pair-wise mean comparisons.  Pearson’s correlation was 

used to determine significant associations between factors.  Sample size varied between 3 

and 8 experimental replications depending on the experiment and desired statistical 

power.  Statistical significance was established as a one-tailed probability of type I error 
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occurring at less than 5%.  Analysis and graphics were performed on Prism 4.0 software 

(GraphPad, San Diego, CA).  

2.3. RESULTS 

Cytotoxicity of CSiO2 in scavenger receptor knockout mice on C57Bl/6 background 

To evaluate the activity of different SR in crystalline silica (CSiO2)-induced 

cytotoxicity of AM, a variety of SR single and double null mice on the C57BL/6 

background were used. The effect of CSiO2 on alveolar macrophages (AM) cell viability 

in a 4 h suspension culture showed that AM from the SRA I/II-/- was not significantly 

different from wild-type (WT) with CSiO2 causing a concentration-dependent loss in cell 

viability in both WT and SRA I/II-/- (Figure 1A). In contrast, the AM from MARCO-/- and 

MARCO-/-/ SRA I/II-/- mice showed no loss of viability for any concentration of CSiO2 

tested. These differences were statistically significant when compared to the 

corresponding WT values at 50, 100, and 150 µg/ml CSiO2  (Figure 3A).  

Further the effect of CSiO2 on AM cell apoptosis in a 4 h suspension culture 

indicate that AM from the SRA I/II-/- were not significantly different than WT AM. 

CSiO2 caused a concentration-dependent increase in cell apoptosis in both WT and SRA 

I/II-/- AM (Figure 3B).  Consistent with the observation above, the AM from MARCO-/- 

and MARCO-/-/SRA I/II-/- mice showed no apoptosis for any concentration of CSiO2 

tested.  These differences were also statistically significant when compared to the 

corresponding WT values at 100, and 150 µg/ml CSiO2 (Figure 3B). Taken together, 

these results suggest that MARCO was important and SRA I/II was not important for AM 

cytotoxicity on C57Bl/6 mice. 
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Figure 3:  Role of MARCO in CSiO2 induced AM cytotoxicity.  

(A) Alveolar macrophage viability. Mean ± SEM percent of cells excluding trypan blue 

dye following a 4 h suspension culture with CSiO2 particles (0, 25, 50, 100, and 150 

µg/ml).  (B) Alveolar macrophage apoptosis. Mean ± SEM optical density at 405 nm 

following a 4 h suspension culture with CSiO2 particles (0, 25, 50, 100, and 150 µg/ml).  

For both graphs:  indicates alveolar macrophages (AM) from C57 wild-type;  AM from 

MARCO-/-/SRA I/II-/-;  AM from SRA I/II-/-; ▲ AM from MARCO-/-.  * indicates P < 

0.05, ** indicates P < 0.01 and *** indicates P < 0.001 compared to corresponding wild-

type control by Bonferroni’s post hoc test.  Sample size n = 3. 
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Relative MARCO Expression in Scavenger Receptor Knockout C57Bl/6 Mice 

Based on the results in Figure 3, MARCO surface expression was determined for 

AM from both WT and KO mice (Figure 4).  All of the AM from null mice had a 

significantly different amount of MARCO surface expression from WT AM.  The AM 

from MARCO-/- and MARCO-/-/SRA I/II-/- had significantly less MARCO expression 

than WT AM, with the MARCO-/- having no expression above background. The AM 

from SRA I/II-/- mice had significantly increased levels of MARCO expression 

suggesting a compensatory role of MARCO in SRA I/II-/- mice in C57Bl/6 model (Figure 

4). 
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Figure 4:  Relative expression of MARCO on AM from SR knockout mice   

Mean ± SEM percent of CD11c/F4-80 positive cells expressing MARCO on the cell 

surface immediately following cell isolation. ** indicates P < 0.01 compared to 

corresponding wild-type control by Dunnett’s comparison to a single control group.  

Sample size n = 3. 
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Relative CSiO2 Uptake by AM from Scavenger Receptor Knockout C57Bl/6 Mice 

To further evaluate the role of each SR in AM cytotoxicity, CSiO2 uptake was determined 

for all WT and null AM by measuring increase in side scatter properties following CSiO2 

exposure, using flow cytometry. Binding of non fluorescent environmental particles such 

as CSiO2 and titanium dioxide (TiO2) by the cells leads to increase in side scatter 

properties. This increase is used as a measure for particle uptake by cells (Figure 5A). 

Following a 1.5 h suspension culture at 37° C, CSiO2 (100 µg/ml) produced a significant 

increase in side scatter compared to baseline (no particle control) in AM from WT mice 

(Figure 5B).  Likewise, AM from SRA I/II-/- mice had significant increases in side scatter 

with CSiO2 exposure compared to the corresponding baseline control.  The AM from 

MARCO-/- and MARCO-/-/SRA I/II-/- mice showed a slight non-significant increase in 

side scatter with CSiO2 exposure. While, AM from SRA I/II-/- showed the highest side 

scatter in response to CSiO2 (Figure 5B).  The baselines side scatter (CSiO2) across 

groups was not significantly different. There was no detectable CSiO2-induced apoptosis 

or necrosis (potentially confounding the side scatter data) at the end of the 90-min 

culture. Therefore, these results suggest that MARCO plays an important role in CSiO2 

uptake and cytotoxicity in the C57Bl/6 mice. 
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Figure 5:  Relative CSiO2 uptake by AM from SR knockout mice.   

(A) Representative flow cytometry scatter plots showing the increase in side scatter 

properties of cells following particle (TiO2) treatment, similar results are obtained 

following CSiO2 treatment. (B) Mean ± SEM side scatter intensity following 1.5 hr 

suspension culture with or without silica particles (100 µg/ml).  Open bars indicate no 

CSiO2.  Hatched bars indicate CSiO2 exposure.  * indicates P < 0.05, and *** indicates P 

< 0.001 compared to corresponding ‘no CSiO2’ control by Bonferroni’s post hoc test.  

Sample size n =3 
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MARCO antibody blocks CSiO2 uptake and cytotoxicity  

Because MARCO appeared to be the best candidate for CSiO2 binding and 

toxicity, AM from WT mice were used with an anti-mouse MARCO antibody. Briefly, 

anti-mouse MARCO (azide free, R & D Systems) at 5 µg/ml was pre-incubated with the 

AM for 30 min prior to CSiO2 exposure followed by treatment with and without CSiO2 

(100 µg/ml) for additional 4 h.   These results show that significant increases in side 

scatter with CSiO2 exposure are completely reversed in the presence of MARCO 

antibody (Figure 6A). Likewise, the significant loss of viability see in the presence of 

CSiO2 (100 µg/ml) is also completely inhibited by MARCO antibody (Figure 6B).  

Consistent with the viability data, CSiO2 -induced apoptosis is significantly attenuated in 

the presence of MARCO antibody (Figure 6C). Because MARCO antibody is completely 

effective in preventing CSiO2 uptake and toxicity, it can be concluded that SRA I/II has 

does not contribute to CSiO2 recognition in C57Bl/6 AM. 
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Figure 6: Anti-mouse MARCO blocks CSiO2 uptake and toxicity in C57Bl/6 AM.   

(A) Mean ± SEM side scatter intensity following 1.5 h suspension culture with or without 

CSiO2 particles (100 µg/ml).  (B) Mean ± SEM percent of cells excluding trypan blue 

dye following a 4-hr suspension culture with or without CSiO2 particles (100 µg/ml).  (C) 

Mean ± SEM optical density at 405 nm following a 4 h suspension culture with or 

without CSiO2 particles (100 µg/ml).  Open bars indicate no CSiO2.  Hatched bars 

indicates CSiO2 exposure.  ** indicates P < 0.01 and *** indicates P < 0.001 compared to 

corresponding ‘no CSiO2’ control by Bonferroni’s post hoc test.  Sample size n = 3. 
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The effect of Human MARCO Transfection on Chinese Hamster Ovary Cells 

To further evaluate the role of MARCO in CSiO2 binding, Chinese hamster ovary 

(CHO) cells were transfected with human MARCO (hMARCO) as described in Methods.  

The resulting transfected cells were exposed to CSiO2 (150 µg/ml) and TiO2 (25 µg/ml) 

for 30 min in suspension culture at 37°C. Following particle treatment, there was an 

increase in side scatter of hMARCO transfected CHO cells (Figure 7). Treatment with 

TiO2 particles led to a more dramatic increase in side scatter as compared to CSiO2 

particles, indicating that there were differences in the binding pattern of the two particles 

(Figure 7). Changes in the side scatter properties following treatment of the CHO cells 

CSiO2 and TiO2 are shown in the representative scatter plots in Figure 7. The increase in 

side scatter properties of cells indicate that both TiO2 and CSiO2 binding was 

significantly increased in hMARCO transfected CHO cells (Figure 8).  While the empty 

vector transfected did not bind or showed little particle binding. Furthermore, with regard 

to CSiO2, binding was blocked by the pre-addition of anti-hMARCO (PLK-1) antibody 

(Figure 8A). Apoptosis assay, measuring increases in sub G0/G1 cell population showed 

that the hMARCO transfected CHO cells show significant amount of apoptosis in 

comparison with mock-transfected cells (Figure 8B). This effect was partially inhibited 

by pre-incubation with anti-human MARCO antibody (PLK-1) (data not shown). 
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Figure 7:  The effect of human MARCO transfection on CHO cells.    

(A) Mean ± SEM percent side scatter relative to unstimulated control cells following 30 

min particle exposure in suspension culture.  Open bars indicate empty vector control 

transfection (E).  Solid bars indicate human MARCO (M) transfection. (B) Mean ± SEM, 

Percent sub G0/G1 cells. Open bars indicate no CSiO2. Hatched bars indicate CSiO2 

exposure. ** indicates P < 0.01 and *** indicates P < 0.001 compared to corresponding 

‘empty vector (E)’ control by Bonferroni’s post hoc test.  Sample size n = 3-5 
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Alveolar macrophages from MARCO-/- are resistant to CSiO2-induced APC hyper-

stimulation of T cells. 

Having established the importance of MARCO in recognition, binding, and 

toxicity of CSiO2 particles, it was necessary to test the hypothesis that CSiO2 modulations 

to macrophage function would likewise be affected. The CSiO2 particle effect on 

macrophage APC activity is well described elsewhere (Hamilton et al., 2001; Migliaccio 

et al., 2005). The results of the APC activity assay illustrate that lymphocyte-derived 

cytokines IL-13 and IFN-γ resulting from antigen-dependent (ovalbumin-stimulated) and 

antigen-independent (anti-CD3-stimulated) macrophage/lymphocyte co-cultures (Figure 

8, A-D). The CSiO2-induced APC hyper-response is evident in all 4 graphs (Figure 8, A–

D). This effect was specific to CSiO2, as TiO2 did not stimulate cytokine release 

significantly above control. In addition, the CSiO2-stimulated MARCO-/- AM co-cultures 

had significant reductions in T cell cytokine release compared with wild type regardless 

of the stimulant (ovalbumin or CD3 antibody). The difference in Fig. 8C failed to reach 

statistical significance, although it does represent a 50% reduction in IFN-γ release 

relative to control. The absence of MARCO have functional consequences with regard to 

the behavior of AM exposed to CSiO2 particles, suggesting that CSiO2 binding, 

internalization, and/or cytotoxicity are necessary for the increase in APC activity. 

However, the internalization of CSiO2 may be the most important factor as MARCO null 

AM still had a residual increase in APC activity, possibly due to a non-receptor-mediated 

endocytosis.  
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Figure 8. Alveolar macrophages from MARCO-/- mice are resistant to CSiO2-

induced APC hyperstimulation. 

(A) Mean ± SEM. Ovalbumin (OVA)-stimulated IL-13 release in 48 h 

macrophage/lymphocyte coculture. (B) Mean ± SEM.  Anti-CD3-stimulated IL-13 

release in 48-h macrophage/lymphocyte co-culture. (C) Mean ± SEM. ovalbumin-

stimulated IFN-γ release in 48-h macrophage/lymphocyte co-culture. (D) Mean ±S.E. 

anti-CD3-stimulated IFN-γ release in 48-h macrophage/lymphocyte co-culture. Open bars 

indicate AM from C57BL/6 wild type. Black bars indicate AM from MARCO-/-. ***, 

indicates p <0.001 compared with corresponding wild-type control by Bonferroni’s post 

hoc test. Sample size n =3.  
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2.4. DISCUSSION 

The key finding from this study is that scavenger receptor MARCO is solely 

responsible for crystalline silica (CSiO2) uptake and toxicity in C57Bl/6 alveolar 

macrophages (AM). The importance of MARCO in this model may be attributed to the 

observation that it is the primary constitutively expressed SR (of the ones examined) on 

the C57Bl/6 AM. Several studies have reported overlapping functions between SRA I/II 

and MARCO, this is an example of “convergent evolution” where proteins from different 

genes develop a similar response pattern and function (Kobzik, 1995; Murphy et al., 

2005; Palecanda et al., 1999a) Therefore this study examined relative contributions of 

SRA I/II and MARCO, however MARCO was clearly found to be the important receptor 

for CSiO2 binding in C57Bl/6 model.  

The CSiO2 cytotoxicity studies (Figure 3) demonstrated that the absence of 

MARCO was critical to blocking the cytotoxicity of CSiO2.  Only AM from the 

MARCO-/- and MARCO-/-/SRA I/II-/- mice were completely resistant to CSiO2-induced 

cytotoxicity. Interestingly, the absence of SRA I/II did not have an effect in this model.  

This could be explained by the possibility that SRA I/II is not constitutively expressed on 

C57BL6 AM.  The gene deletion, in this case, would be of no consequence. Also, 

analysis of MARCO expression on AM from various SR null mice demonstrated that 

SRA I/II-/- mice have significantly enhanced MARCO expression suggesting a 

compensatory role of MARCO in CSiO2 binding by these AM (Figure 4). However, the 

increased MARCO expression on SRA I/II-/- AM did not contribute to CSiO2 increased 

cytotoxicity (Figure 1). Another possible explanation is that the polymorphism in 

C57BL6 SRA I/II results in a nonfunctional receptor incapable of interacting with CSiO2.  

There is ample evidence that SRA I/II interacts with CSiO2 particles initiating apoptosis 
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in AM and other cell models as defined by increase in caspase 3 activity and increases in 

sub G0/G1 population (Chao et al., 2001; Hamilton et al., 2001). In addition, a recent 

publication shows that SRA I/II is important in binding bacteria and environmental 

particles in an in vivo murine model (Arredouani et al., 2006). 

The relative distribution of MARCO in the various null strains (Figure 4) suggests 

that the absence of SRA I/II may influence the expression level of MARCO. This might 

indicate a compensatory mechanism with regard to SR expression due to various 

overlapping functions of SR. Regardless of the strain, a relatively small percentage of 

AM (~ 14 %) express MARCO constitutively (Figure 4). This could be due to maturation 

state of the AM, with MARCO expression higher in more mature AM.  

The result of the CSiO2 uptake study (Figure 5B) was consistent with the results 

presented above on CSiO2 cytotoxicity.  The absence of MARCO, regardless of single or 

double KO model, resulted in a significant reduction for AM CSiO2 uptake. However, it 

did not completely eliminate CSiO2 uptake.  There was still some CSiO2 uptake in the 

MARCO null models, indicating that a possible alternative process for taking up CSiO2 

may exist on these AM cells.  Nevertheless, the level of MARCO expression was highly 

correlated with the amount of CSiO2 uptake in different knockout strains, indicating the 

receptor-mediated mechanism was dominant in the C57Bl/6 model.  In contrast, the 

cytotoxicity measures were not significantly correlated to MARCO expression, regardless 

of which measure was used (viability or apoptosis).  This may indicate that CSiO2 

cytotoxicity is a more complex phenomenon than the particle uptake.   Not much is 

known about intracellular MARCO signaling, but studies on SRA I/II ligand binding 

reveal activation of phospholipase C-γ1, phosphatidylinositol 3-kinase, protein kinase C 
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(Hsu et al., 1998), heterotrimeric G proteins (Whitman et al., 2000), mitogen-activated 

protein kinases (Hsu et al., 2001), and caspases (Chao et al., 2001).  Due to the similarity 

in structure and function between MARCO and SRA I/II, it seems reasonable to speculate 

that MARCO would initiate similar intracellular responses. 

Studies conducted using human MARCO transfected CHO cells demonstrated 

that only human MARCO transfected CHO cells bound CSiO2 while, the empty vector 

transfected CHO cells did not (Figure 7).  This also demonstrates that CSiO2 binding with 

the MARCO receptor is not an artifact of using the C57BL6 model indicating relevance 

to the human condition.    

In conclusion, the C57BL6 AM uses MARCO for the uptake and processing of 

silica particles.  In a percentage of the AM population, this leads to significant amount of 

cell death depending on the amount of CSiO2 encountered by the cells.  This scenario is 

different in other mouse strains because of different receptors responsible for the 

processing of CSiO2. There are probably multiple mechanisms at work in the human lung 

with regard to the processing of inhaled CSiO2, depending on the constitutive expression 

of these scavenger receptors for any given exposed individual. It may partially explain 

the variable susceptibilities to CSiO2 exposure and subsequent difference on disease 

pathologies in humans. 
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CHAPTER TWO 

DIFFERENTIAL BINDING OF INORGANIC PARTICLES TO MARCO 

 

ABSTRACT 

Alveolar macrophages (AM) in the lung have been documented to play pivotal 

roles in inflammation and fibrosis (silicosis) following inhalation of crystalline silica 

(CSiO2). In contrast, exposure to either titanium dioxide (TiO2) or amorphous silica 

(ASiO2) is considered relatively benign. The scavenger receptor MARCO, expressed on 

AM, binds and internalizes environmental particles such as silica and TiO2. Only CSiO2 

is toxic to AM, while ASiO2 and TiO2 are not. We hypothesize that differences in 

induction of pathology between toxic CSiO2 and non-toxic particles ASiO2 and TiO2 may 

be related to their differential binding to MARCO. In vitro studies with CHO cells 

transfected with human MARCO and mutants were conducted to better characterize 

MARCO-particulate (e.g. ASiO2, CSiO2 and TiO2) interactions. Results with MARCO 

transfected CHO cells and MARCO specific antibody demonstrated that the scavenger 

receptor cysteine rich (SRCR) domain of MARCO was required for particle binding for 

all the tested particles. Only TiO2 required the divalent cations Ca+2 and/or Mg+2 for 

binding to MARCO. Furthermore, results from competitive binding studies supported the 

notion that TiO2 and each of the silica particles bound to different motifs in SRCR 

domain of MARCO. The results also suggest that particle shape and/or crystal structure 

may be the determinants linking particle binding to MARCO and cytotoxicity. Taken 

together, these results demonstrate the SRCR domain of MARCO is required for particle 
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binding and that involvement of different regions of SRCR domain may distinguish 

downstream events following particle binding. 

3.1. INTRODUCTION 

Prolonged occupational exposures (mining, construction, etc.) to inhaled 

crystalline silica (CSiO2) particles can lead to an irreversible and many times fatal 

fibrotic condition of the lungs called silicosis (Hamilton et al., 2008; Ng and Chan, 

1992). Currently, no effective treatment exists for silicosis, which is a significant health 

problem throughout the world, particularly in developing nations (Saiyed and Tiwari, 

2004).  

Silica is one of the most abundant minerals found on the surface of earth; it exists 

in crystalline and amorphous forms: both of which contribute to occupational exposure. 

However, of the two silica types, CSiO2 is known to be the causative agent for silicosis. 

Although amorphous silica (ASiO2) has been reported to cause pulmonary inflammation 

following inhalation, it does not lead to silicosis (Merget et al., 2002; Reuzel et al., 

1991). Similarly, another inorganic particle, titanium dioxide (TiO2) is relatively inert and 

is widely used in many industrial applications, as well as in medical and dental prosthesis 

(Driscoll et al., 1991; Lardot et al., 1998; Lindenschmidt et al., 1990).  

Inhaled particles are initially encountered by the first line of defense, alveolar 

macrophages in the lungs. Alveolar macrophages (AM) are cells that are primarily 

responsible for binding, ingestion and ultimately clearance of inhaled particulate matter 

(Hamilton et al., 2008). When AM encounter CSiO2 they have been shown to rapidly 

engulf the particles and undergo apoptosis (Hamilton et al., 2008; Iyer et al., 1996b). 

Consequently, it is possible that AM engulf both apoptotic bodies and free CSiO2 
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particles and then secrete proinflammatory cytokines or undergo apoptosis. This cycle of 

engulfment, apoptosis and cytokine secretion can lead to recruitment of other 

inflammatory cells that contribute to prolonged inflammation and development of fibrosis 

(Beamer and Holian, 2007; McCabe, 2003). In contrast, ASiO2 and TiO2 (at sizes used in 

this study) do not induce macrophage apoptosis, suggesting that apoptosis could play a 

role in initiating the fibrotic development by silica (Arts et al., 2007; Iyer et al., 1996b; 

Thibodeau et al., 2003). This phenomenon is further supported by studies that indicate 

that the fibrogenic potential of a particle correlates with its ability to induce apoptosis in 

AM (Iyer et al., 1996b; Rimal et al., 2005).  

Scavenger receptors (SR) are cell surface glycoproteins capable of binding a 

broad spectrum of ligands including oxidized and acetylated lipoproteins and bacterial 

pathogens (Murphy et al., 2005). Recent studies have demonstrated SR involvement in 

environmental particle binding and lung inflammation (Arredouani et al., 2006; Hamilton 

et al., 2006).  A member of the scavenger receptor family is MAcrophage Receptor with 

COllagenous structure (MARCO) expressed by macrophages, dendritic cells and certain 

endothelial cells. Previous studies identified MARCO as a key receptor in recognizing 

CSiO2 and causing apoptosis in murine AM (Hamilton et al., 2006).  While, MARCO has 

also been reported to be a receptor for TiO2 and does not cause apoptosis (Arredouani et 

al., 2005).  However, even though MARCO binds both CSiO2 and TiO2, they show 

contrasting apoptotic and pathological outcomes (Thakur et al., 2008).  

MARCO is a 210 kDa trimeric, type II membrane protein comprised of a short 

intracellular and a large extracellular domain, a transmembrane domain and a C-terminal 

cysteine rich (SRCR) domain (Elomaa et al., 1995; Kraal et al., 2000). The SRCR 
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domain is an ancient, highly conserved domain consisting of 100 amino acid residues 

(Sarrias et al., 2004). Proteins expressing this highly conserved motif are classified into a 

SRCR superfamily and have a wide range of functions often associated with the innate 

immune system (Rast et al., 2006; Sarrias et al., 2004). The SRCR domain of MARCO 

has been shown to be a binding site for bacteria, lipopolysaccharide and acetylated 

lipoproteins (Brannstrom et al., 2002a; Chen et al., 2006). Recently, the SRCR domain of 

MARCO was crystallized and was found to possess a basic cluster containing several 

arginines (positively charged) and a separate acidic cluster containing a bound metal ion 

(negatively charged). Both clusters were reported to be involved in ligand binding (Ojala 

et al., 2007). Taking into consideration the negative surface charge of environmental 

particles such as silica and TiO2, it can be postulated that the positively charged arginines 

in the SRCR domain of MARCO might be important for binding of the particles. 

Although previous studies have focused on determining the role of MARCO in binding 

of environmental particles, the exact binding site has not been determined. Collectively, 

we hypothesize that the difference in induction of pathology between toxic CSiO2 and the 

non-toxic ASiO2 and TiO2 may be related to differential binding to MARCO, and the 

signaling events triggered by these particle-MARCO interactions. The two primary goals 

of the present study were to identify the particle-binding domain of MARCO and to 

examine the parameters that influence particle binding to MARCO. 
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3.2. MATERIALS AND METHODS 

Mice 

SRA I/II null mice on C57Bl/6 background were kindly provided by Dr. Lester 

Kobzik (Harvard school of public Health, Boston, MA). Genotyping was carried out as 

described previously (Dahl et al., 2007). All mice were maintained in the University of 

Montana specific pathogen-free (SPF) laboratory animal facility. The mice were 

maintained on an ovalbumin-free diet and given deionizer water ad libitum. The 

University of Montana Institutional Animal Care and Use Committee (IACUC) approved 

all animal procedures.  

Particles 

Crystalline silica (CSiO2) (Min-U-Sil-5) obtained from Pennsylvania Sand Glass 

Corporation (Pittsburg, PA) was acid washed in 1 M HCl at 100°C, to remove metals and 

microbial contamination. The CSiO2 particles were then washed three times with sterile 

water and dried at 200°C to remove all water. Titanium dioxide (TiO2) particles were 

purchased from Fischer Scientific (T315-500). The DAPI conjugated amorphous silica 

(ASiO2) particles 1 µm in diameter were purchased from Postnova Analytics, Inc. (Salt 

Lake City, UT). The ASiO2 particles were washed three times with sterile phosphate 

buffered solution (PBS) to remove the shipping medium. For all binding and cytotoxicity 

experiments the particles were suspended in either PBS-Azide Buffer (PAB), (0.1 % 

sodium azide, 1 % FBS in PBS) or Ham’s F-12 media at 2.5 mg/ml. The stock 

suspensions were dispersed by sonic disruption for 1 min before each experiment. For all 

experiments CSiO2 and ASiO2 were used at a concentration of 150 µg/ml. Since TiO2 
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particles were smaller in size (100-200 nm) as compared to CSiO2 and ASiO2 (1-2.5 µm), 

the cells were treated with 25 µg/ml or 75 µg/ml in an effort to keep the number as well 

as the surface area of particles comparable, but sufficient for binding studies. 

Alveolar Macrophage Isolation and Culture 

Mice were euthanized by a lethal injection of EuthasolTM. The lungs were 

removed with the heart and then lavaged with five 1 ml aliquots of cold PBS. Pooled 

cells were centrifuged at 400 µg for 5 min. The lavage fluid was aspirated and discarded. 

The cell pellet was resuspended in 1 ml of RPMI 1640 culture media supplemented with 

10 % fetal bovine serum, 100 IU penicillin, 100 µg/ml streptomycin (Mediatech Inc., 

Herdon, VA). Total lavage cells were enumerated using a Z1 Coulter Particle Counter 

(Beckman Coulter). The cells were adjusted to 106 per ml and added to 0.65 ml sterile 

polypropylene tubes at 500 µl/tube as described previously (Scheule et al., 1992). 

Particulates were added and the cells were cultured in a tumbling suspension culture for 

4h at 37°C in a water-jacketed CO2 (5%) incubator (ThermoForma, Mariette, OH). 

 

Alveolar Macrophage Viability Assay 

Isolated AM were cultured in suspension (106 cells/ml) with different 

concentrations of particles for 4 h at 37°C. At the end of this period, 10 µl of the culture 

supernatant was removed and mixed with 10 µl of 0.4% trypan blue solution (Sigma). 

The resulting mixture was added to a hemacytometer and the cells were examined by 

light microscopy. One hundred random cells were counted per sample, and cells that 
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appeared to contain blue dye were considered dead. Data were expressed as percent of 

cells excluding trypan blue dye (percent living cells).  

Cell Culture  

Chinese Hamster Ovary (CHO) cells (American Type Culture Collection, 

Manassas, VA) were cultured in HAM’s F-12 medium with 2 mM L-glutamine 

(Mediatech Inc) containing 10% heat-inactivated fetal bovine serum (FBS), 100 IU 

penicillin, 100 µg/ml streptomycin (Mediatech Inc.). CHO cells were transiently 

transfected with pcDNA 3.1 (E), full length human MARCO (M), truncated MARCO 

(Mt) lacking the entire SRCR domain, MARCO with only the initial 22 amino acids in 

the SRCR domain (M442) or MARCO mutant with only 11 amino acids (lacking the 

RGR motif) in the SRCR domain (M431).  Scavenger Receptor A I (SRA I) was included 

as an expression control.  All transfections were conducted using lipofectamine 2000 as 

per manufacturer’s instructions (Invitrogen). Transfection efficiency of the full length 

MARCO and the various mutants was determined to be 30-40 % by staining the cells for 

MARCO expression using human MARCO specific antibody (PLK-1) kindly provided 

by Dr. Lester Kobzik (Harvard School of Public Health) and isotype control (IgG3) plus 

FITC conjugated secondary antibody (Southern Biotechnology Associates, Birmingham, 

AL). Analysis was done using FACS Aria flow cytometer using Diva Software (version 

4.1.2; BD Biosciences). All the experiments were conducted 36-40 h following transient 

transfections. 

In vitro binding of inorganic particles 
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Transiently transfected CHO cells were harvested using trypsin and the cells were 

resuspended in 1 ml of PAB and counted. Cells, 1x106, were treated with or without 10 

µg/ml of monoclonal antibody against the SRCR domain of human MARCO (PLK-1) or 

10 µg/ml isotype control IgG3 on ice for 15 min. The cells were then treated with 

different concentrations of CSiO2, TiO2 and ASiO2 for 30 min at 37°C in tumbling 

suspension culture. Particle binding was then measured as an increase in mean side 

scatter (nonfluorescent CSiO2 and TiO2) as previously described (Hamilton et al., 2006; 

Palecanda and Kobzik, 2000) and as increase in DAPI positive cells (fluorescent DAPI 

ASiO2 particles) by FACS Aria flow cytometer using Diva Software (version 4.1.2; BD 

Biosciences). The analysis of the CSiO2 and TiO2 particle binding included changes in 

side scatter of all cells (transfected and untransfected).  

 

Cell surface expression of human MARCO variants in CHO cells   

Transiently transfected CHO cells (grown in 10 cm2 culture dishes) were washed 

twice with ice-cold PBS containing 1 mM CaCl2 and 1 mM MgCl2 (Ca+2/Mg+2) and then 

incubated on ice with 0.5 mg/ml Biotin (Pierce, Rockford, IL) for 15 min. Biotin 

treatment was repeated again for 15 min on ice. The cells were then washed once with 

ice-cold PBS (Ca+2/Mg+2) and lysed in cell lysis buffer. The cell lysate was then 

centrifuged and transferred to 1.5 ml eppendorf tubes. Forty microliters of Neutravidin 

beads (Pierce) were added to the cleared lysate and rotated at 4°C for 2h. The beads were 

then washed four times with the ice-cold cell lysis buffer. The protein was eluted from 

the beads with 2x sample buffer and denatured by heating at 70°C for 10 min. The 30 µl 

of bead-free lysate was then fractionated by 10 % Bis-Tris NuPAGE gel (Invitrogen) and 
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transferred to nitrocellulose membrane. The nitrocellulose membrane was incubated with 

monoclonal antibody against the intracellular domain of human MARCO. The membrane 

was incubated with an anti-rabbit HRP-labeled secondary antibody (R & D Systems, 

Minneapolis, MN) and protein signals were visualized with a chemiluminescent reagent 

(ECL Plus Western Blotting detection system; Amersham Biosciences, Piscataway, NJ)  

Cytotoxicity assay (YOPRO-1/PI assay)  

Transiently transfected CHO cells were harvested using trypsin and the cells were 

resuspended in Ham’s F-12 media and counted. Cells, 1x106 were treated with either 

CSiO2, ASiO2 or TiO2 for 15 min in a tumbling suspension culture at 37°C to ensure 

particle binding to the cells. The treated cells were then plated in 6-well plates at 37°C or 

6h. After 6h the cells were trypsinized, centrifuged and resuspended in 1 ml of PBS, 

followed by addition of 1 µm of propidium iodide (PI) and 1 µm YOPRO-1, a DNA 

intercalant dye (Idziorek et al., 1995) that stains only apoptotic cells (Molecular Probes, 

Eugene, OR) for 20 min. The percentages of apoptotic (Yopro-1-positive) and late 

apoptotic (Yopro-1 and PI-positive) cells were immediately determined by FACS Aria 

flow cytometer using FACS DIVA software (version 4.1.2; BD Biosciences).  

Effects of CSiO2 or TiO2 pretreatment on ASiO2 binding 

Transiently transfected CHO cells were harvested using trypsin and the cells were 

resuspended in 1 ml of PAB and counted. Cells, 1 x106 were pretreated with 50 µg/ml of 

CSiO2 or 75 µg/ml of TiO2 for 15 min prior to different concentrations of ASiO2 exposure 

for 30 min at 37°C in tumbling suspension culture. The uptake of the ASiO2 particles was 
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immediately measured as an increase in DAPI fluorescent cells by FACS Aria flow 

cytometer using Diva Software (version 4.1.2; BD Biosciences). 

Effect of divalent cations Ca+2 and Mg+2 on CSiO2, ASiO2 and TiO2 binding   

Transiently transfected CHO cells were harvested using trypsin and the cells were 

resuspended in 5 ml of Dulbecco’s PBS (dPBS) (Ca+2 and Mg+2 free) (Invitrogen) 

supplemented with 2 mM EDTA to chelate any remaining divalent cations present in the 

cell suspension. The cells were then washed twice with 5 ml of dPBS to remove residual 

EDTA. Cells, 106 per ml were suspended in dPBS and treated with TiO2 (25 or 75 

µg/ml), CSiO2 (150 µg/ml) and ASiO2 (150 µg/ml) in presence or absence of 5 mM 

CaCl2 and/or 5mM MgCl2 (final concentration). The effect of divalent cations (Ca+2 and 

Mg+2) on particle binding was then measured as an increase in mean side scatter (SSc) by 

FACS Aria flow cytometer using Diva Software (version 4.1.2; BD Biosciences). 

Particle size measurement and zeta potential assays. 

Particle size was measured by scanning electron microscopy (SEM) and to study 

the effect of the suspension media the size was analyzed using light scattering techniques 

by Dr. Nianqiang Wu (West Virginia University, WV). Hitachi S4700 scanning electron 

microscope (SEM) was used to image the particles. Prior to SEM observation, the 

particle suspension was dropped on the surface of a Si wafer and then dried in ambient 

condition. The size of CSiO2 particles was measured by Malvern Mastersizer 2000 

particle size analyzer. The particles were suspended in deionized water, PAB or Ham’s F-

12 media, sonicated and then analyzed using Nanosizer and Microsizer instruments at 
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RT. The surface charge on the particles was measured by calculating the zeta potential of 

the particle (samples were analyzed by Colloidal Sciences Laboratory, Westampton, NJ).  

 

Statistical Analysis 

Data were analyzed using the Prism Software, version 4 (GraphPad Prism, San 

Diego, CA). The significance of differences between treatment groups and controls was 

determined using one-way ANOVA or two-way analysis of variance in conjunction with 

Bonferroni’s post hoc analysis depending on the experiment. Data are represented as 

mean ± SE. A value of p< 0.05 was considered significant. 
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3.3. RESULTS 

CSiO2, but not ASiO2 or TiO2, is toxic to AM: 

Previous reports have demonstrated that in comparison with crystalline silica 

(CSiO2), other inorganic particles such as amorphous silica (ASiO2) and titanium dioxide 

(TiO2) are not toxic (Iyer et al., 1996b). To confirm previous reports of relative toxicity 

of CSiO2, ASiO2 and TiO2, the effect of these particles on AM viability was analyzed. 

Primary AM from SRA I/II-/- mice were treated with different concentrations ASiO2, 

CSiO2 and TiO2 for 4 h in suspension-culture and changes in cell viability were measured 

using trypan blue exclusion assay (Hamilton et al., 2006; Iyer et al., 1996b). As expected, 

treatment with CSiO2 caused significant loss in cell viability while treatment of TiO2 and 

ASiO2 was found to be relatively non-toxic to AM (Figure 9).  
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Figure 9: Effect of inorganic particle treatment on alveolar macrophage viability.  

CSiO2 induced dose dependent loss in cell viability as compared to untreated AM, while 

ASiO2 and TiO2 treatments did not have effect at any concentration used. Mean ± SE, 

percent cells excluding trypan blue dye. ***, indicates p<0.001 compared with untreated 

AM by Bonferroni’s post hoc test. Sample size n=3. 
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Crystalline and Amorphous Inorganic Particles Bind to MARCO in vitro.  

The scavenger receptor MARCO is an important player in binding of both toxic 

CSiO2 and non-toxic TiO2 (Hamilton et al., 2006; Palecanda et al., 1999a). Therefore, to 

begin understanding the role of MARCO in the contrasting effects of these particles, their 

binding patterns to MARCO were analyzed (Figure 10). Initial studies were performed 

using CHO cells transiently transfected with full length human MARCO (M) or empty 

vector, pretreated with or without MARCO antibody (PLK-1) or isotype control IgG3, 

followed by treatment with different concentrations of the three particles. Binding 

experiments were performed using a flow cytometric assay (Palecanda and Kobzik, 

2000), wherein an increase in mean side scatter intensity was used as a marker for 

binding of CSiO2 and TiO2. For the DAPI conjugated ASiO2 particles, increase in 

percentages of DAPI positive cells was used as a measure of binding. The results showed 

that all three inorganic particles bound to MARCO (Figure 10). Further to define the 

specificity of particle bindings to MARCO, binding studies were conducted following 

pretreatment with MARCO specific blocking antibody (Figure 10). In each case, the 

MARCO antibody efficiently blocked binding for all three inorganic particles while the 

isotype control had no effect (Figure 10; data not shown), suggesting that the SRCR 

domain of MARCO contained the particle binding sites. 
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Figure 10: Binding of CSiO2, ASiO2 and TiO2 to MARCO.  

All three inorganic particles (A) CSiO2,  (B) TiO2 and (C) ASiO2 significantly bound 

human MARCO transfected cells and the human MARCO specific antibody (PLK1) 

inhibited the binding. Results represent mean values ± SE of three independent 

experiments. ***, indicates p<0.001 as compared to side scatter (SSc) of corresponding 

“Ab” treated cells by Bonferroni’s post hoc test.  
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SRCR domain of MARCO is required for binding inorganic particles.  

In order to study the requirement of the SRCR domain of MARCO in binding of 

particles, CHO cells were transiently transfected with full length or truncated forms of 

MARCO. The truncated mutants either lacked the entire SRCR domain of MARCO (Mt) 

or only contained the first 22 amino acid residues of the SRCR domain (M442) that was 

reported to contain the bacteria binding ‘RGR’ motif (Brannstrom et al., 2002a). Cell 

surface expression of the truncated mutants was analyzed by surface biotinylation (Figure 

11). CHO cells were transfected with full length and truncated mutants, followed by 

precipitation of biotinylated proteins on ice and electroblotting as described in the 

Methods.  The nitrocellulose membranes were then probed with an antibody against the 

intracellular domain of MARCO. The results indicated that the mutants M442 and Mt 

were expressed on the surface (lanes 2 and 3) at higher levels compared to the full length 

MARCO (lane 4). The increased expression of the mutants is similar to previously 

published results (Brannstrom et al., 2002a). As controls, SRA I and mock-transfected 

cells were probed with the same antibody. As expected, streptavidin-agarose was not 

found to precipitate any biotinylated MARCO for mock (Lane 5) or SRA I (Lane 1) 

transfected cells.  

 The role of the SRCR domain of MARCO in particle binding was studied 

using transfected cells incubated with the three inorganic particles measured using flow 

cytometry as described above. The results showed that cells expressing the mutant lacking 

the SRCR domain of MARCO (Mt) did not bind any of the particles, indicating that the 

SRCR domain of MARCO is a common binding domain for all the tested particles. The 

truncated protein (M442) with the “RGR” motif was not sufficient to bind CSiO2 and TiO2 

(Figure 12A). However, the ASiO2 particles bound to M442 expressing cells although the 
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binding was significantly less than the full length MARCO expressing cells (Figure 12B). 

Another mutant containing the first 11 amino acids of SRCR domain and lacking the 

“RGR” motif (M431) did not bind the ASiO2 particles (data not shown). These results 

showed that the “RGR” motif (found capable for supporting bacterial binding) in the 

SRCR domain of MARCO is not sufficient for binding of CSiO2 and TiO2 but the motif 

appears to play a partial role in ASiO2 binding.  
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Figure 11: Expression of MARCO mutants on the cell surface of CHO cells.  

Surface biotinylation was performed on CHO cells expressing empty vector (E), full 

length MARCO (M), MARCO mutants, (Mt), (M-442) and scavenger receptor A I (SRA 

I) (control). The nitrocellulose membrane was probed with antibody against the 

intracellular domain of human MARCO. Mt and M-442 were expressed at a higher level 

as compared to full length MARCO on the cell surface. The intracellular MARCO 

antibody recognizes a nonspecific band in the truncated MARCO transfected cell lysates. 

The Western blot is representative of two experiments. 
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Figure 12: Binding of inorganic particles by human MARCO requires the SRCR 

domain.  

(A) The mutant lacking the SRCR domain of MARCO Mt or the M442 mutant did not 

bind either CSiO2 or TiO2, indicating that SRCR domain of MARCO is the binding 

domain for these particles and the “RGR” motif does not play a role in binding of these 

particles. (B) ASiO2 did not bind Mt expressing cells however ASiO2 showed partial 

binding to the M442 expressing cells indicating that compared with CSiO2 and TiO2, the 

“RGR” motif plays a partial role in ASiO2 binding. Results represent mean values ± SE. 

**, indicates  p<0.01; ***, indicates p<0.001 compared with “E” control and ###, 

indicates p<0.001 compared with corresponding “M-442” cells by Bonferroni’s post-hoc 

test. Sample size=3-4. 
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MARCO is required for CSiO2-induced cytotoxicity. 

 Crystalline silica (CSiO2) has been reported to induce both apoptosis and necrosis 

in murine and human AM (Iyer et al., 1996b; Iyer and Holian, 1997).  In contrast, TiO2 

and ASiO2 have been reported to be relatively benign (Figure 13).  Therefore, in order to 

confirm the contribution of the SRCR domain in MARCO to cytotoxicity in the 

transfected CHO cell model, the full length MARCO and MARCO variant transfected 

cells were treated with CSiO2 or TiO2 for 6 h. The cells were stained with 1 µm of 

YOPRO-1 and PI, and the percentages of viable and apoptotic cells were analyzed by 

flow cytometry. The results indicated that CSiO2 induced significant cytotoxicity in full 

length MARCO transfected cells compared to the mock and Mt transfected cells (Figure 

13).  In contrast, TiO2 particles were not cytotoxic to any of the transfectants (data not 

shown). The results support the role of the SRCR domain of MARCO in binding and 

CSiO2-induced cytotoxicity.  
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Figure 13: CSiO2 induces cytotoxicity in only full length MARCO transfected cells.  

CSiO2 induced cytotoxicity in only full length MARCO transfected cells. Results 

represent mean values ± SE. ***, indicates p<0.001 compared with “Mt” control by 

Bonferroni’s post-hoc test. Sample size=3-4. 

 

 

 

 

 

 

 

 

 

 



 80 

Inhibition of ASiO2 binding by CSiO2, but not by TiO2. 

 Competitive binding studies were conducted to determine if all the tested 

particles had overlapping binding domains or whether they use different binding motifs in 

the same SRCR domain. The transfected cells were pretreated with CSiO2 or TiO2, 15 

minutes prior to incubation with different concentrations of ASiO2 particles. CSiO2 

significantly inhibited ASiO2 binding (Figure 14A). The TiO2 particles however did not 

inhibit the binding of ASiO2 particles to MARCO (Figure 14B). The results strengthened 

the hypothesis that TiO2 and CSiO2 bind to different regions on the SRCR Domain of 

MARCO. Since all particles increase the side scatter of cells when they bind, the reverse 

experiment could not be conducted, viz., if ASiO2 effectively inhibits CSiO2 binding.  
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Figure 14: CSiO2 and TiO2 bind to the distinct regions of SRCR domain of 

MARCO.  

(A) CSiO2 pretreatment completely inhibits ASiO2 binding. (B) In contrast, TiO2 

pretreatment did not inhibit ASiO2 binding. Results represent mean values ± SE. * 

p<0.05; **, indicates p<0.01 and ***, indicates p<0.001 compared with corresponding “ 

particle pretreated M cells” by Bonferroni’s post hoc test. Sample size=3. 
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Role of divalent cations on particulate binding.  

The crystalline structure of SRCR domain of murine MARCO was recently found 

to contain Mg+2 in its acidic amino acid cluster (Ojala et al., 2007). Also, the presence of 

divalent cations was found to be necessary for binding of some MARCO ligands (Ojala et 

al., 2007). To date, no studies have been conducted examining the role of divalent cations 

in particle binding to MARCO. Therefore, the binding of the three particles to MARCO-

transfected CHO cells was measured in the presence or absence of exogenous cations (5 

mM of CaCl2, MgCl2 or both). The binding of crystalline and amorphous forms of silica 

was not affected by the presence or absence of divalent cations (Figure 15B-C). In 

contrast, no significant TiO2 binding was observed in the absence of the divalent cations 

or in the presence of EDTA (added to ensure complete divalent cation removal, see 

Methods) (Figure 15A). The addition of CaCl2 and/or MgCl2 allowed the binding of TiO2 

to MARCO (Figure 15A). These findings indicate that the TiO2 interactions with 

MARCO specifically require divalent cations, while CSiO2 and ASiO2 do not. 
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Figure 15: Effect of divalent cations Ca+2 and Mg+2 on CSiO2, ASiO2 and TiO2 

binding by MARCO.  

(A) TiO2 did not bind MARCO transfected CHO cells in the absence of divalent cations, 

presence of divalent cations in media restored the TiO2 binding. (B and C) In contrast, 

CSiO2 and ASiO2 binding was not dependent on presence of divalent cations. The values 

are represented as fold increase relative to empty vector mean SSc. Results represent 

mean values ± SE. *, indicates p<0.05 and **, indicates p<0.01 compared with 

corresponding “mean SSc of particle treated M cells without divalent cations” by 

Bonferroni’s post-hoc test. Sample size=3. 
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Physical properties of inorganic particles 

In order to better assess the role of physical properties of the particles on their 

binding, the influence of properties such as particle size, shape and zeta potential 

(measure of the surface charge) on interaction with MARCO was examined (Table 1). 

SEM and light scattering analysis showed that the overall diameter of all the inorganic 

particles ranged from 200 nm to 2.5 µm. The TiO2 particles were the smallest and had a 

uniform diameter of 100-300 nm. The ASiO2 particles were 1 µm in size, according to 

the specifications of vendor (Postnova Analytics). The CSiO2 was found to be more 

heterogeneous in composition with both relatively large and small particles. The large 

particles were about 1-2.5 µm in size, while the smaller particles ranged from 200 nm – 

1.0 µm. The suspending medium (media, H2O, PAB) had no significant effect on the 

particle size (Table 1).  

Analysis of the SEM data also revealed the shape of the particles. The TiO2 

particles were found to be spherical, while CSiO2 particles were found to be irregular in 

shape (Table 1). The ASiO2 particles, according to the vendor specification (and visual 

microscopic examination) were spherical in shape. The results obtained from the zeta 

potential measurement of the particles (Table 1) showed that the TiO2 particles were most 

negative with zeta potential (-) 47.9 mV whereas CSiO2 and ASiO2 had a similar zeta 

potential, (-) 16.2 mV and (-) 17.8 mV, respectively. 
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TABLE  1 Physical properties of inorganic particles used in the study.  

 

 
                              Particle Size                      Shape                   Zeta Potential 
 

ASiO2                               1.0 µm                              spherical                   -17.8 
                              SD <0.25 
 

CSiO2                               1-2.5 µm                           irregular                   -16.2 
                              some < 1.0 µm  
 

TiO2                                 100-200 nm                       spherical                 - 47.9 
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3.4. DISCUSSION 

Recent studies provided evidence that in AM from C57Bl/6 mice, MARCO plays 

a predominant role in binding of toxic CSiO2 particles (Hamilton et al., 2006). The ability 

of MARCO to bind inert non-toxic TiO2 particles was first reported by Kobzik and co-

workers (Palecanda et al., 1999a). These observations raise an important question as to 

why, despite binding to a common receptor MARCO, certain inorganic particles such as 

CSiO2 are toxic to the AM while TiO2 particles are not (Figure 9). We hypothesized that 

the differences in the apoptotic outcome in response to these inorganic particles may, at 

least in part, be related to differences in binding of these particles to MARCO. To 

understand the differences in binding of environmental particles to MARCO, the purpose 

of this study was to define the particle-binding domain of MARCO and map some of the 

determinants for individual particle binding to MARCO. 

To explore the possibility that crystalline and amorphous forms of silica, as well 

as TiO2, bind to distinct motifs in the receptor MARCO, a transfected cell line model was 

developed. For these studies, CHO cells expressing full length MARCO or various 

MARCO mutants were used. The cell surface expression of the full length MARCO and 

mutants was confirmed by cell surface biotinylation (Figure 11). The results of the 

binding studies conducted with full length MARCO transfected cells showed that all 

three particles bound to MARCO (Figure 10). The fact that the MARCO specific 

antibody, which binds to an epitope in the SRCR domain, significantly inhibited the 

binding of all three particles to MARCO suggested that the SRCR domain was the 

particle-binding domain of MARCO.  This finding was confirmed by the observation that 

the MARCO mutant without the SRCR domain failed to bind any of the particles (Figure 

12A-B). Consequently, the data established that all these particles require the SRCR 
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domain for binding. Cytotoxicity assays with transfected CHO cells further showed that 

the CSiO2 binding to the SRCR domain of MARCO was required for its cytotoxicity 

(Figure 13), whereas treatment with ASiO2 and TiO2 did not induce cytotoxicity in the 

full length MARCO transfected cells (data not shown) despite efficient binding (Figure 

10). The results support the hypothesis that the SRCR domain is the binding domain for 

environmental particles. 

The next question was whether the “RGR” motif within the SRCR domain would 

be sufficient for particle binding. The M442 mutant containing the “RGR” motif showed 

significant ability (distinctly reduced compared to full length MARCO) to bind only the 

ASiO2 particles (Figure 12B). The CSiO2 and TiO2 particles did not bind to the M442 

mutant expressing cells. The “RGR” motif within the SRCR domain has been previously 

shown to be sufficient for bacterial binding (Brannstrom et al., 2002a). Importantly, this 

finding suggests that ASiO2 is unique with respect to the “RGR” motif in contrast to 

CSiO2 and TiO2 and hence binds distinctly to MARCO.  

       Competitive binding studies were conducted to further investigate how each 

particle binds to the SRCR domain of MARCO. For these studies cells were pretreated 

with CSiO2 or TiO2 particles prior to incubation with ASiO2 particles. Considering 

relatively large sizes of the particles the complete inhibition of ASiO2 binding by CSiO2 

was not unexpected (Figure 14A). Furthermore, this observation does not negate the 

proposed role of the “RGR” motif as being sufficient for ASiO2 binding. It should be kept 

in mind while interpreting these results that all of these particles are very large with 

respect to MARCO. Therefore, the observation that TiO2 did not completely block ASiO2 

binding is more difficult to explain (Figure 6B). Nevertheless, it indicates a divergence in 
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the requirements between both the silica particles and TiO2 in binding to MARCO. This 

is not a classic case of ligand receptor binding, but may require multiple MARCO 

receptors interacting with these rather large ligands. 

       Divalent cation binding properties of certain receptors such as LDL receptors 

is often exploited in nature to regulate complex biological events such as receptor-ligand 

interaction, endocytosis and dissociation of the ligand from the receptor (Dirlam-Schatz 

and Attie, 1998). Recently, the SRCR domain of MARCO was shown to contain an 

acidic and a distinct basic cluster of amino acids, both the clusters were reported to be 

important for ligand binding. The crystallized SRCR domain of MARCO contained a 

divalent cation in the acidic cluster (Ojala et al., 2007). In the current study, divalent 

cations (Ca+2, Mg+2) were necessary only for TiO2 binding (Figure 15A), whereas the 

other two inorganic particles (CSiO2 or ASiO2) did not depend on the presence of 

divalent cations (Figure 15B-D). Calcium binding to the cysteine-rich domain of a 

particular protein has been shown to stabilize the protein conformation (Handford et al., 

1990; Knott et al., 1996; Thielens et al., 1988). Bound calcium might cause a 

conformational change in the SRCR domain and expose certain amino acid residues 

leading to more efficient binding. The data suggests that either the TiO2 binds to the 

acidic cluster (containing the divalent cations) of the SRCR domain or the divalent cation 

binding to the SRCR domain leads to a distinct conformational changes in the binding 

domain facilitating TiO2 binding. It should be noted that changes in dispersion medium 

such as divalent cations will affect the zeta potential of all three particles. However, 

addition of divalent cations would affect all particles in a relatively similar manner. 

Therefore, it is most likely that the divalent cations in this study act on the SRCR domain 
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of MARCO. Taken together, the results (Figure 12, 14 and 15) emphasize that the three 

different particles in the study show significant differences in binding to MARCO. 

The differences in the pathological outcomes after exposure to each particle are 

speculated to be related to the differences in the physical properties of the particles. 

(Johnston et al., 2000; Thakur et al., 2008). Therefore, the particles were characterized 

and analyzed for their size, shape and surface charge (Table 1). The analysis suggested 

that there were no major differences in size of the particles. The overall surface charge or 

the zeta potential of the silica particles was essentially identical (-) 16.2 to (-) 17.8. The 

TiO2 particles were the most negative particles with zeta potential (-) 47.9. While the net 

surface charge of the particles could be measured by zeta potential measurements, the 

surface charge distribution (order) could not be determined. While it appears that TiO2 

differs from the two silica particles in how it binds to MARCO and therefore could 

explain the difference in toxicity between TiO2 and CSiO2, the difference between ASiO2 

and CSiO2 appears to be subtle. They are similar in relative size and surface charge, but 

differ in shape and crystal structure (Table 1). It is possible that one or both the properties 

contribute to the difference in toxicity between the two silica particles. The only 

difference in binding appeared to be the sufficiency of the “RGR” motif for ASiO2 

binding. The assumption made in these studies is that the two silica particles cause 

difference in conformational change in MARCO such that CSiO2 causes cytotoxicity 

while ASiO2 does not. As stated above, the difference in shape and crystal structure could 

affect silica binding to MARCO causing differences in conformation and downstream 

signaling. Without more data, the importance of shape or crystal structure is speculative. 

As yet the signaling pathways initiated by receptor MARCO are not completely 
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elucidated, which makes the aforementioned theory difficult to test experimentally.  

We propose that factors such as presence of divalent cations, shape of the particle 

and crystal structure (the distribution or the order of surface charge) on the particle may 

play an important role in determining toxic or non-toxic binding of particles. Studies 

conducted with more diverse sizes and surface charge, of one particle could further 

strengthen these conclusions. Nevertheless, the results obtained in the current study 

provide strong support to the notion that environmental particles bind to distinct motifs in 

the SRCR domain of MARCO, which is influenced by individual physical properties. 

The implications of these observations are that each particle-MARCO interaction may 

trigger unique conformational changes in the receptor, which might influence the 

recruitment of different intracellular proteins leading to diverse biological responses. 
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CHAPTER THREE 

CRITICAL ROLE OF MARCO IN CRYSTALLINE SILICA-INDUCED 

PULMONARY INFLAMMATION 

 

ABSTRACT 

Exposure to crystalline silica (CSiO2) is a serious occupational hazard and has 

been reported to lead to inflammation that progresses to silicosis. Previous studies have 

established the scavenger receptor MARCO as an important receptor for binding and 

uptake of CSiO2 particles. Although MARCO is responsible for binding CSiO2, the role 

of MARCO in inflammatory response following CSiO2 exposure has not been 

investigated. We hypothesize that absence of MARCO will cause diminished clearance of 

CSiO2 from the lung leading to enhanced pulmonary inflammation. Consistent with the in 

vitro studies, alveolar macrophages (AM) from MARCO-/- mice show decreased particle 

uptake in vivo, as compared to WT mice, indicating abnormalities in clearance 

mechanisms. Furthermore, MARCO-/- mice showed enhanced acute inflammation and 

injury, following CSiO2 treatment marked by significant increases in cytokines and 

inflammatory cells. Similarly, histological analysis of lungs from MARCO-/- mice, three 

months post- CSiO2 exposure showed increased inflammatory cells in the tissue sections 

as compared to the C57Bl/6 WT mice. As hypothesized, the results demonstrate that 

MARCO is important for clearance of fibrogenic CSiO2 particles and absence of 

MARCO causes exacerbations in acute and chronic inflammatory responses. 

Furthermore, results from in vitro studies suggest that coating CSiO2 particles with His 

tagged recombinant MARCO (rMARCO) facilitates anti His-tag antibody mediated 
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particle uptake by Fc receptors on AM. Additional, in vivo studies analyzing the effect of 

rMARCO on enhanced inflammatory response in CSiO2-exposed MARCO-/- mice will 

evaluate the therapeutic potential of rMARCO. 

4.1. INTRODUCTION 

Exposure to respirable particles such as crystalline silica (CSiO2), is associated 

with an increase in pulmonary inflammation, which plays a vital role in pathologies such 

as bronchitis and pulmonary fibrosis known as silicosis (Park et al., 2002). Exposure to 

CSiO2 also results in the development of autoimmune diseases such as scleroderma and 

systemic lupus erythematosus (Brown et al., 2005; Parks et al., 2002). Most investigators 

agree that alveolar macrophages (AM) play a central role in CSiO2-induced pathologies 

(Hamilton et al., 2008; Lehnert et al., 1989). AM are purported to be important in the 

innate defense of the lung against inhaled particles and play a critical role in the 

recognition, uptake and clearance of CSiO2 particles via the mucociliatary escalator 

and/or lymphatic systems (Bowden, 1987; Brody et al., 1982).  

Balance between clearance and retention of CSiO2 in the lung plays an important 

role in regulating the inflammatory response and development of pulmonary fibrosis. 

Also, facilitating the clearance of CSiO2 from the alveolar and interstitial compartments 

decreases the fibrotic response in the lung (Adamson et al., 1992, 1994). Unsuccessful 

clearance of CSiO2 results in persistent inflammation, due to prolonged interaction of 

CSiO2 with immune cell populations such as neutrophils, AM, dendritic and epithelial 

cells, leading to epithelial cell injury and translocation of uncleared particles to the 

interstitial space (Warheit et al., 1997). The CSiO2- interstitial macrophage interaction 

initiates a cascade of inflammatory signals, which are major contributors to progressive 
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fibrotic development in the lung (Adamson et al., 1991). The above observations 

highlight the importance of initial recognition and rapid clearance of CSiO2 from the 

lung, to minimize the inflammatory response by AM.  

Alveolar macrophages recognize and bind CSiO2 particles by class A scavenger 

receptors expressed on their surface (Hamilton et al., 2006; Thakur et al., 2008). The 

Class A scavenger receptors (SR) are pattern recognition receptors that bind a wide 

variety of ligands such as acetylated low density lipoprotein (AcLDL), bacteria, inhaled 

particles and are known to play a role in innate immune responses (Murphy et al., 2005; 

Thakur et al., 2008). Scavenger receptors are mainly expressed on macrophages, 

dendritic and epithelial cells (Sarrias et al., 2004). The Class A family of scavenger 

receptors is composed of five family members; SRA (SRA –I, -II and –III), MARCO, 

CSR1 (cellular stress response 1), SRCL (Scavenger receptor with C-type lectin) and 

SCARA 5 (class A scavenger receptor 5) (Thakur et al., 2008). Of the five identified 

Class A SR, the macrophage receptor with collagenous structure (MARCO) has been 

previously shown to be important for binding of unopsonized particles such as CSiO2 and 

titanium dioxide (TiO2) (Arredouani et al., 2004; Hamilton et al., 2006). In particular, the 

C-terminal 100 amino acid long cysteine rich (SRCR) domain of MARCO has been 

reported as the binding region for CSiO2 particles (Chapter 2). 

The SRCR domain is an ancient and highly conserved motif and found as a single 

or tandem repeats in several soluble or membrane bound proteins often associated with 

the innate immune system (Sarrias et al., 2004). Recently, a soluble recombinant 

MARCO protein composed of the C-terminal extracellular domain of MARCO, but 

lacking the N-terminal cytoplasmic and transmembrane domains (rMARCO) was shown 
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to efficiently bind ligands such as bacteria and AcLDL in a cell free system (Chen et al., 

2006; Sankala et al., 2002). Previous work has identified a specific role for MARCO in 

regulation of titanium dioxide (TiO2) induced acute inflammatory response (Arredouani 

et al., 2004). While MARCO has been shown to be important for lung defense against the 

non-fibrogenic TiO2 particles, its physiological role in regulating the inflammatory 

response against the fibrogenic CSiO2 particles has not been reported.  

In this study, we examined the role of MARCO in clearing CSiO2 particles from 

the lung and investigated whether MARCO-mediated clearance plays a role in reducing 

the inflammatory response. We hypothesize that absence of MARCO will diminish the 

clearance of CSiO2 from the lung leading to increased lung injury and inflammatory 

response. We also explored the possibility of facilitating CSiO2 clearance through an 

alternative mechanism, which may have therapeutic implications for subjects that have 

diminished clearance of inhaled particles from the lung. Taken together, the role of 

MARCO in pulmonary response following CSiO2 exposure was characterized in vivo 

using C57Bl/6 wild type and MARCO-/- mice.  

 

4.2. MATERIALS AND METHODS 

Mice 

Breeding pairs of C57Bl/6 and Balb/c mice were originally purchased from The 

Jackson Laboratory (Bar harbor, ME, USA); while breeding pairs of MARCO-/- mice on 

C57Bl/6 background were kindly provided by Dr. Lester Kobzik (Harvard School of 

Public Health, Boston, MA). Age-matched (6-8 weeks), males and females were used for 

all the studies. Genotyping was carried out as described previously (Dahl et al., 2007). 
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All mice were maintained in the University of Montana specific pathogen-free (SPF) 

laboratory animal facility. The mice were maintained on an ovalbumin-free diet and 

given deionized water ad libitum. The University of Montana Institutional Animal Care 

and Use Committee (IACUC) approved all animal procedures.  

Particles 

Crystalline silica (CSiO2), Min-U-Sil-5, obtained from Pennsylvania sand glass 

corporation (Pittsburg, PA, USA), was acid washed in 1 M HCl at 100°C, to remove 

metals and any endotoxin contamination. The CSiO2 particles were then washed three 

times with sterile water and dried in oven at 200°C to remove all water. Titanium dioxide 

(TiO2) particles were purchased from Fischer scientific (Pittsburg, PA, USA). DAPI 

conjugated amorphous silica (ASiO2) particles (1 µm in diameter) were purchased from 

Postnova Analytics, Inc. (Salt Lake City, UT, USA). The ASiO2 particles were washed 

three times with sterile phosphate buffered solution (PBS) to remove the shipping 

medium. The stock suspensions in PAB buffer (PBS buffer containing 0.1% sodium 

azide and 2 % fetal calf serum) were dispersed by sonic disruption for 1 min before each 

experiment.  

Isolation of the interstitial leukocytes 

C57Bl/6 (wild type) or Balb/c mice (8-12 weeks old) were anaesthetized with 0.1 

mg/kg of ketamine hydrochloride (Fort Dodge Animal Health, Fort Dogdge, IA, USA) 

and intranasally instilled with 25 µl of sterile PBS or 1 mg of CSiO2 or TiO2 suspended in 

25 µl of sterile PBS. Following 3, 7 and 14 days post-instillations, the mice were 

euthanized with a lethal dose of pentobarbital sodium. Lungs were removed, briefly 

suspended in sterile PBS on ice and minced with sterile razor blades. The minced lungs 
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were dispersed in (~5 ml/lung) collagenase buffer containing of 1 mg/ml collagenase 1A  

(Sigma Chemical Co., St. Louis, MO, USA) in media, (RPMI, Mediatech Herndon, VA, 

USA) supplemented with 10 % FBS and 1% Pen/Strep, (Gibco, Grand Island, NY, USA) 

for 1.5 - 2 h. The tubes were then incubated in a 37°C water bath and shaken 

intermittently. Tubes containing the digested lungs were removed and filtered through 

sterile cell strainer (BD Biosciences). Post collagenase treatment, multiple cell 

populations were fractionated using Percoll (GE Biosciences, Piscataway, NJ, USA) 

gradient centrifugation. The layer between heavy and light percoll solutions was carefully 

collected with sterile Pasteur pipette avoiding the top (epithelial cells and fibroblasts) and 

bottom (red blood cells) layers. The collected cell suspension was washed with sterile 

PBS and resuspended in 1 ml PBS and enumerated using a Z1 Coulter particle counter 

(Beckman Coulter, Fullerton, CA). 

Cytokine ELISA 

At 24 h post-particle instillations, wild type (WT) and MARCO-/- mice were 

euthanized with Euthasol and a whole lung lavage was performed by cannulating the 

trachea and infusing the lungs with sterile PBS four times. The lavage fluid fraction from 

the first pull was centrifuged (1500 rpm for 5 min at 4°C) and the cell free supernatant 

was used for biochemical measurements. The cell pellet was combined with the 

remaining three lavage fractions and total cell numbers were determined. IL-1β, TNF-α 

and IL-6 concentrations were measured using murine ELISA kits according to 

manufacturers protocol (R&D Systems Minneapolis, MN, USA).  

Pulmonary vascular permeability 
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Lavage fluid protein from WT and MARCO-/- PBS or CSiO2 exposed mice were 

analyzed for total protein using bicinchoninic acid (BCA) protein assay (Pierce, 

Rockford, IL, USA) according to manufacturers instructions and analyzed with the 

Spectra Max 340 plate reader (GE Healthcare, United Kingdom). Data are expressed as 

µg total protein per milliliter of lavage fluid.  

Flow cytometry 

One x 105 lavaged cells or interstitial leukocytes were blocked with purified rat 

anti-mouse CD16/CD32 BD Pharmingen (San Jose, CA, USA) diluted 1:100 in PAB 

(PBS buffer with 0.01% sodium azide and 1% fetal calf serum). The lavage cells were 

stained for cell surface markers with one microgram of monoclonal antibodies specific to 

CD11c (APC), CD11b (PerCP Cy5.5), Gr-1 (APC Cy7) (BD Biosciences, San Jose, CA, 

USA) MHC II (PE, eBiosciences, San Diego, CA, USA), F480 (Pacific blue, Catlag 

Laboratories, Burlingame, CA) for 30 minutes on ice. Interstitial leukocytes were 

additionally stained with 1 µg of MARCO FITC (Serotec, Raleigh, NC, USA). Cells 

were washed, resuspended in PAB and analyzed immediately. Acquisition and analysis 

was performed on a FACS Aria flow cytometer using FACS Diva software (version 

4.1.2, BD Biosciences). Compensation of the spectral overlap for each fluorochrome was 

calculated using anti-rat/hamster Ig compensation beads (BD Biosciences). 

Determination of lung wet weight and histopathological analysis of lung tissue 

C57Bl/6 (WT) and MARCO-/- mice were intranasally instilled with 25 µl PBS or 

1 mg CSiO2, once a week for 4 weeks, and allowed to recover for three months.  Lung 

weights were determined by weighing unlavaged lungs. The right lobe of the lung was 
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inflated with 1 ml of 4% paraformaldehyde in PBS and post-fixed for 24 hours at 4oC. 

Routine histological procedures were used to paraffin embed the lobe. As described 

previously, five micron sections were cut, mounted on superfrost slides (VWR), and 

stained with Gomori’s trichrome (Beamer and Holian, 2005a).  Five mice per group were 

examined microscopically and representative images captured with a Nikon E-800 

microscope and Nikon DXM 1200 digital color camera using 4X and 40X objectives. 

Effect of antibody mediated uptake of CSiO2 particles by AM 

The CSiO2 particles (100 µg/ml) were coated with or without 3 µg of recombinant 

soluble MARCO with a His tag (rMARCO) protein (R&D Systems) at 37ºC for 30 min. 

These coated silica particles were then treated with or without 3 µg of Anti-His6 

Antibody (Roche-Applied Sciences, Palo Alto, CA) for 30 min at 37ºC.  Five hundred 

thousand cells from WT mice were added into the respective eppendorf tubes for one 

hour on the rotator at 37ºC. To determine the role of Fc receptor in CSiO2 uptake, the 

cells were incubated with (1:50) Fcblock on ice for 20 min followed by incubation with 

coated and uncoated CSiO2 particles. The CSiO2 uptake was measured by analyzing the 

increase in mean side scatter or granularity of the AM as described previously (Hamilton 

et al., 2006) on a FACS Aria flow cytometer using FACS Diva software (version 4.1.2, 

BD Biosciences).  

Statistical Analysis 

Differences between CSiO2 treated and control (PBS or TiO2) treated WT and 

MARCO-/- mice were assessed using using the Prism Software, version 4 (GraphPad 

Prism, San Diego, CA). The significance of differences between treatment groups and 
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controls was determined using t-test or two-way analysis of variance in conjunction with 

Bonferroni’s post hoc analysis depending on the experiment. Data are represented as 

mean ± SE. A value of p< 0.05 was considered significant. 

4.3. RESULTS 

MARCO positive interstitial leukocytes 

MARCO has been reported to play an important role in inflammation induced by 

ligands such as bacteria and LPS. Also, MARCO expression has been reported to be 

increased on several macrophage populations following exposure to these ligands (van 

der Laan et al., 1999). Therefore, to determine whether intranasal instillations of 

cystalline silica (CSiO2) altered MARCO expression on the lung interstitial macrophages 

(IM), C57Bl/6 and Balb/c mice were treated with 25 µl of PBS, 1 mg of CSiO2 or TiO2 

(non-fibrogenic particle control) in 25 µl of PBS. Three, seven and fourteen days 

following treatments, individual mouse lungs were digested with collagenase and 

interstitial leukocytes were isolated, stained with prescribed cells surface markers and 

analyzed by flow cytometry. Staining for F480 and CD11b cell surface markers was used 

to identify the previously described subsets of interstitial leukocytes and MARCO 

expression was assessed in these populations (Figure 16) (Migliaccio et al., 2005). Flow 

cytometry analysis demonstrated significant increases in percentages of MARCO+ 

C57Bl/6 IM (F480+/CD11bhi) at 7 and 14 days following CSiO2 instillations when 

compared with PBS and TiO2 instillations (Figure 16 and 17A). Similar increases in 

MARCO+ IM were observed in Balb/c mice following CSiO2 instillations relative to the 

controls, PBS and TiO2 but with important differences (Figure 17B). In contrast to 

C57Bl/6, the Balb/c mice showed significant increase in MARCO+ IM as early as three 
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days post-CSiO2 exposure (Figure 17 A and B). Also, there was relatively higher increase 

in percentages of CSiO2-induced MARCO+ IM in Balb/c mice (~350%) as compared 

with C57Bl/6 mice (~225%) at 7 and 14 days following CSiO2 instillations (Figure 17B). 

The varying percentages of MARCO+ IM in C57Bl/6 and Balb/c mice following CSiO2 

treatment are suggestive of strain specific differences in importance of MARCO.  

Another intriguing observation is that TiO2 instillations failed to induce increase 

in MARCO+ IM popoulation in both C57Bl/6 and Balb/c mice at all the tested time-

points (Figure 17 A and B). This observation suggests differences in signaling 

mechanisms following CSiO2 and TiO2 exposure contributing to varying regulation of 

MARCO. Altogether, these data show that CSiO2 exposure upregulates MARCO 

expression on IM from both C57Bl/6 and Balb/c, while the PBS and TiO2 exposure does 

not.  
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Figure 16: Representative scatter plot and histograms showing changes in MARCO 

expression on C57Bl/6 IM.  

C57Bl/6 mice were instilled intranasally with either PBS, CSiO2 or TiO2, at 3, 7 and 14 

days, lungs were digested with collagenase and the interstitial leukocytes were isolated 

by percoll gradient centrifugation. Three distinct subsets were defined by using 

fluorescent phenotypic markers of which the F480+/CD11bhi population showed 

significantly increased MARCO expression following CSiO2 instillations (second 

representative histogram) as compared with saline and TiO2 instillations (first and third 

representative histogram respectively). Sample size n=4-8. 
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Figure 17: Percent increase in MARCO positive interstitial macrophages following 

CSiO2 but not TiO2 instillation 

A. Relative to PBS instilled control the number of MARCO positive interstitial 

macrophages (IM) is significantly increased at 7 and 14 days, but not 3 days following 

CSiO2 treatment in C57Bl/6 mice. In contrast, TiO2 exposure had no effect on percent of 

MARCO positive macrophages at any time point examined (n=4-8).  B. Similarly, CSiO2 

treatment in Balb/c mice led to increase in percent MARCO positive macrophages at 3, 7 

and 14 days whereas TiO2 had no effect at any time point. The results represent percent 

increase relative to percentage of MARCO+ IM from PBS instilled mice and values are 

reported are mean ± SE for each treatment group (n=4-8). *, indicates p<0.05 compared 

to PBS; #, p<0.05 compared to TiO2 by Bonferroni’s post-hoc test.  
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MARCO-mediated uptake and clearance of CSiO2 from the lung: 

To study the role of MARCO in CSiO2 recognition and uptake, WT and MARCO-

/- mice were intranasally exposed to CSiO2 particles. Individual mouse lungs were 

lavaged and the cells collected, stained with prescribed cell surface markers and analyzed 

using flow cytometry. Lavages from naïve C57Bl/6 mice contained approximately 90% 

of cells, which expressed high levels of CD11c (CD11c+). Additional staining of cells for 

MHC II expression revealed two distinct subsets of CD11c+ cells. The CD11c+ cells that 

expressed low amounts of MHC II were classified as AM, while the CD11c+ cells with 

high levels of MHC II expression were classified as DC. Since AM are the cells that are 

primarily responsible for initial uptake of CSiO2 particle, changes in the side scatter 

properties of AM, which are indicative of changes in cellular granularity, were measured 

by flow cytometry (Hamilton et al., 2006). AM from MARCO-/- mice showed attenuated 

uptake of CSiO2 particles as compared to WT mice (Figure 18A). Further, DAPI 

conjugated amorphous silica (ASiO2) particles were used to study the role of AM in 

uptake of silica particles over time (Figure 18B). An increase in mean fluorescence 

intensity of AM following DAPI ASiO2 exposure served as a sensitive measure for 

studying particle uptake as compared to using side scatter changes for CSiO2 particles. 

The importance of MARCO in uptake of DAPI conjugated ASiO2 particles, over time 

was confirmed at 4, 24 and 72 hours post-instillation (Figure 18B). At all time points 

investigated, only WT AM bound the DAPI ASiO2 particles while MARCO-/- AM were 

unable to bind ASiO2. These results highlight the role of MARCO in silica uptake and 

clearance from the lung.  
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Figure 18: Silica uptake is attenuated in MARCO-/- macrophages 

(A) MARCO-/- or WT mice were treated intranasally with CSiO2 (1 mg) or PBS. After 24 

h of CSiO2 treatment, AM from both WT and MARCO-/- mice show significant increase 

in side scatter. However, AM from MARCO-/- mice show a significantly attenuated 

change in side scatter compared to AM from WT mice. (B) MARCO-/- and WT mice 

were intranasally instilled with fluorescent ASiO2 particles. At 4, 24 and 72 h, the AM 

were analyzed for increase in mean fluorescence intensity (MFI) as a marker of ASiO2 

uptake. Only AM form ASiO2 treated WT mice showed significant increases in MFI, 

while AM from ASiO2 treated MARCO-/- mice did not show any change in MFI. Results 

are reported as mean values ± SE. *, p<0.05, compared to PBS treated mice,; #, p<0.05, 

compared to silica treated by Bonferroni’s post-hoc test (n=5-6). 
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Assessment of lung injury following CSiO2-exposure.  

Diminished uptake and clearance of CSiO2 particles from the lung by AM leads to 

increased lung injury and permeability (Driscoll et al., 1991). Lung injury marked by 

protein leak across alveolar-capillary barrier is often assessed by measuring total protein 

levels in lavage fluid from mice exposed to environmental toxins (Kenyon et al., 2002). 

To investigate if decreased CSiO2 uptake and clearance by AM leads to increased lung 

injury and permeability, total protein levels in the lavage fluid from MARCO-/- and WT 

mice was measured following 24 h of intranasal exposure to CSiO2 and PBS (Figure 19). 

Both WT and MARCO-/- mice exposed to CSiO2 showed an increase in protein content 

however only MARCO-/- mice demonstrated statistically significant changes, indicating 

enhanced lung injury (Figure 19).  
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Figure 19: Enhanced lung injury following CSiO2 treatment in MARCO-/- mice 

Following CSiO2 exposure lavage fluid from MARCO-/- and WT mice was assessed for 

changes in total protein levels. Both C57Bl/6 WT and MARCO-/- mice showed increases 

in lavage protein levels, however significant changes were observed only in MARCO-/- 

mice. The results are reported as mean ± SE (n=5-6).  **p <0.01 compared to PBS treated 

controls by Bonferroni’s post-hoc test. 
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CSiO2 exposure leads to increased inflammatory cell infiltration in MARCO-/- mice 

Infiltration of immune cells such as AM, DC and neutrophils is an important step 

in development of pulmonary inflammation following exposure to environmental 

particles. After CSiO2 exposure, the results demonstrated an increase (although not 

significant) in total number of lavaged cells from MARCO-/- mice compared to WT mice 

(Figure 20A).   To identify the cell type that was contributing to the increased cellularity 

shown in figure 20A, lavage cells from CSiO2 treated MARCO-/- and WT mice were 

stained for cell surface markers to differentiate AM, DC and neutrophils. The majority of 

the lavage cells were CD11c positive. Additional staining for MHC II revealed two 

subpopulations; AM (CD11c+/ MHC IIlo) and DC (CD11c+/ MHC IIhi). Since Gr-1 

expression is a marker for mature neutrophil, Gr-1 was used to identify neutrophils 

(CD11b+/Gr-1+/CD11clo) (Lagasse and Weissman, 1996). Flow cytometric analysis 

revealed a significant increase in neutrophil infiltration in both WT and MARCO-/- mice 

24 h post-CSiO2 exposure (Figure 20B). Furthermore, there was a significant increase in 

neutrophilia in CSiO2 treated MARCO-/- mice compared with WT CSiO2 treated mice 

(Figure 20B). Similarly, only CSiO2-treated MARCO-/- mice showed significant increases 

in the numbers of AM and DC as compared to corresponding PBS-treated mice while 

corresponding WT mice did not (Figure 20 C and D). Taken together, these results 

further strengthen the observation that there was a marked increase in an inflammatory 

response in the absence of MARCO in CSiO2 treated mice. 
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Figure 20: MARCO-/- mice show increased inflammatory cell infiltration following 

CSiO2 exposure 

Lavage cells were stained for cell surface markers to differentiate AM, DC and neutrophil 

populations. (A) The total number of lavage cells from both WT and MARCO-/- mice 

increased following CSiO2 exposure. (B) CSiO2 exposure for 24 h increased recruitment 

of neutrophils in MARCO-/- mice compared with WT mice. Similarly, absence of 

MARCO also lead to pronounced increases in (C) AM and (D) DC populations 24 h post-

CSiO2 exposure. The results are represented as mean ± SE. *p <0.05 compared to PBS 

treated mice; #, p<0.01 compared to WT CSiO2 treated mice by Bonferroni’s post-hoc 

test. 
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Increase in levels of early response cytokines following CSiO2 exposure in MARCO-

/- mice 

To determine if the induction of lung injury and increased neutrophilia seen in 

MARCO-/- mice following CSiO2 exposure correlated with increased expression of early 

response cytokines, TNF-α, IL-1β and IL-6 were measured in lavage fluid from PBS and 

CSiO2-treated WT and MARCO-/- mice. The levels of all three cytokines were increased 

in WT and MARCO-/- CSiO2 treated mice compared with the respective PBS controls 

(Figure 21 A-C). MARCO-/- CSiO2 treated mice exhibited significantly enhanced IL-6 

levels following CSiO2 exposure compared to WT CSiO2 treated mice (Figure 21 C). The 

observed differences in cytokine profiles between WT and MARCO-/- mice further 

substantiate the previous results showing increased inflammatory response (Figure 19 and 

20) in MARCO-/- mice following CSiO2 exposure.  
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Figure 21: Increased cytokine response in MARCO-/- mice  

After 24 h CSiO2-exposure levels of cytokines (A) IL-1β (B) TNF-α and (C) IL-6 were 

significantly increased in lavage fluid from both WT and MARCO-/- mice. A significant 

increase in IL-6 levels was observed following CSiO2 exposure in MARCO-/- mice 

compared with WT mice. The results are represented as mean ± SE (n=5-6). * p<0.05, as 

compared to PBS treated mice. #, p<0.05 compared to CSiO2-treated WT mice by 

Bonferroni’s post-hoc test.  
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Increase in chronic inflammation following CSiO2 exposure in MARCO-/- mice 

Histopatholgical assessment of lung tissue sections from CSiO2 exposed mice was 

performed to assess whether the acute increase in inflammatory mediators correlate with 

any histopathological changes. WT and MARCO-/- mice were instilled with 1 mg of 

CSiO2 or 25 µl of PBS, every week for four weeks, three months later the mice were 

anaesthetized and the lungs were surgically removed and the lung wet weight was 

assessed and found to be higher in the CSiO2 exposed MARCO-/- mice as compared to 

PBS treated mice. The difference in lung wet weight following three months, CSiO2 

exposure to WT mice did not reach significance (Figure 22E). The lungs were than fixed 

and embedded in paraffin blocks. Five micron sections were then analyzed for 

histological changes (Figure 22 A-D). 

Representative sections from PBS treated WT and MARCO-/- mice (Figure 22 A 

and C) showed normal tissue architecture, indicating that the absence of MARCO does 

not lead to gross anatomical changes. A typical inflammatory response and thickening of 

interstitium was observed in CSiO2 treated WT mice (Figure 22B and inset). In 

comparison, MARCO-/- mice demonstrated an increased accumulation of inflammatory 

cells (Figure 22D and inset). These results indicate that MARCO-/- mice show increased 

chronic inflammation compared to WT mice emphasizing critical role of MARCO in 

CSiO2-induced inflammation.  
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Figure 22: Assessment of lung histopathology following chronic exposure to CSiO2.  

Chronic inflammatory response in the lung was evaluated by gomori’s trichrome staining. 

Representative sections from WT and MARCO-/- mice treated with PBS (A and C); show 

normal tissue and cell architecture and no inflammatory response. (D) MARCO-/- CSiO2-

exposed mice exhibited enhanced infiltration of inflammatory cells compared with CSiO2 

treated WT mice lung sections (B). (Representation of n=5). The magnification bar 25 

µm and 12.5 µm (inset). (E) The wet lung weight of both WT and MARCO-/- mice was 

significantly increased 3 months following CSiO2 treatment as compared with PBS 

treated mice. Results are represented as mean ± SE (n=5-6). * p<0.05, compared with 

PBS treated mice; #, p<0.05, compared with CSiO2 treated MARCO-/- mice. 
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Facilitating antibody mediated uptake of CSiO2 particles 

Previous studies have shown that efficient uptake and clearance of CSiO2 

particles from the lung is very important for resolution of inflammatory reactions 

following exposure (Porter et al., 2004). The results from our current report suggest that 

the absence of MARCO results in decreased CSiO2 clearance leading to increased 

neutrophilia, cytokine levels and lung injury. Therefore, increasing the CSiO2 uptake by 

AM through an alternative mechanism could help resolve the observed increase in 

inflammation in MARCO-/- mice. As an initial step towards determining feasibility, 

soluble recombinant MARCO protein was used to evaluate CSiO2 binding by an 

alternative pathway.  

CSiO2 particles were coated with recombinant MARCO protein (rMARCO), 

composed of the extracellular domain of MARCO with C-terminal SRCR domain and a 

N-terminal nine histidine tag. As expected, rMARCO coated CSiO2 particles were no 

longer recognized by the AM, as shown by the significant inhibition of CSiO2 uptake by 

AM (Figure 23). Further, treating the coated silica particles with antibody against the N-

terminal histidine tag leads to restored recognition and uptake of CSiO2 particles by AM 

(Figure 23). In order to test if the Anti his antibody and rMARCO coated CSiO2 were 

recognized by Fc receptors on the AM, by binding the Fc portion of the Anti-His 

antibody, the AM were treated with Fcblock (CD16/CD32) prior to treatment with Anti 

his-rMARCO-CSiO2 complex. Indeed, the FcBlock pretreatment completely inhibited the 

uptake of the CSiO2 complex. These results support the notion that the Fc portion of the 

His antibody attached to the rMARCO coated CSiO2 particles was recognized by the Fc 
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receptors on the AM. The pretreatment with only Fcblock or the histidine antibody did 

not affect the uptake of CSiO2 particles (Figure 23).  
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Figure 23: Antibody mediated uptake of CSiO2 by AM via Fc Receptors 

Alveolar macrophages (AM) isolated from C57Bl/6 mice showed an increase in side 

scatter following CSiO2 (100 µg/ml) treatment (left bar) relative to unexposed control 

(dotted line).  CSiO2 particles coated with recombinant MARCO (rMARCO) were not 

recognized by AM (second bar). rMARCO coated CSiO2 treated with anti His antibody 

was recognized by the Fc receptors on the AM (third bar), confirmed by FcBlock 

inhibition of this binding complex (fourth bar). Treatment with FcBlock or anti-his 

antibody did not lead to inhibition of CSiO2 binding by AM (last two bars).  The results 

are represented as mean ± SE. *, p<0.05 compared to uncoated CSiO2 treatment, #, 

p<0.05 compared to only rMARCO coated CSiO2 paticles. ϕ, p<0.05 compared to 

FcBlock treated AM followed by treatment with rMARCO coated CSiO2 particles and 

anti His antibody complex. n=3. 
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4.4. DISCUSSION 

Alveolar macrophages (AM) are the first immune cell type to encounter inhaled 

CSiO2 particles (Warheit et al., 1988). Following recognition and uptake of CSiO2 

particles, AM clear some particles from the lung, undergo apoptosis or get activated and 

secrete various cytokines and growth factors (Lugano et al., 1984). These initial steps 

contribute to the events leading to fibroblast proliferation and collagen production in the 

development of silicosis (Bodo et al., 2003; Thakur et al., 2008). An important step 

following crystalline silica  (CSiO2) exposure is clearance of CSiO2 by alveolar 

macrophages (AM) from the lung through the mucociliary pathway or lymphatic 

drainage mechanisms (Adamson et al., 1992; Brody et al., 1982).  The AM express the 

scavenger receptor MARCO, which has been identified as a receptor that plays an 

important role in binding and uptake of CSiO2 particles in murine models (Hamilton et 

al., 2006). The purpose of the current study was to analyze the role of MARCO in vivo, 

in CSiO2 clearance and subsequent inflammation and fibrosis. The results demonstrated 

that the absence of MARCO resulted in decreased CSiO2 clearance from lungs, which 

contributed to increased lung injury and inflammation following CSiO2 exposure. 

Furthermore, coating the CSiO2 particles with rMARCO along with an anti His antibody 

protein facilitated the uptake of CSiO2 particles by AM via alternative mechanisms. 

These studies might have potential therapeutic implications in subjects with diminished 

ability to clear particles from the lung due to decreased expression or polymorphisms of 

MARCO. 

In the lung, interstitial macrophages (IM) along with AM play a pivotal role in 

development of silicosis (Migliaccio et al., 2005; Zetterberg et al., 2000). Numerous 

reports have supported the hypothesis that translocation of CSiO2 loaded AM from the 
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alveolar space to the pulmonary interstitium leads to CSiO2-IM interaction and enhances 

activation of the adjacent fibroblasts and development of silicosis (Adamson et al., 1991; 

Zetterberg et al., 2000). Following three, seven and fourteen days of CSiO2 exposure the 

IM from C57Bl/6 and Balb/c mice, showed a significant increase in percentage of 

MARCO expressing IM (Figure 17A-B). These results are specific to CSiO2, because the 

IM from mice treated with non-fibrogenic particle TiO2 did not show any increase in 

MARCO+ IM (Figure 17A-B). Differences in induction of MARCO expression by CSiO2 

and TiO2 may be attributed to differential signaling events. In this regard, p38 mitogen 

activated protein kinases (MAPK) have been reported to play a role in regulation of 

MARCO (Doyle et al., 2004). Some studies have suggested that AM derived cytokines 

such as IL-1β are unique to CSiO2 –induced pulmonary response and TiO2 exposure does 

not stimulate their expression (Driscoll et al., 1990; Oghiso and Kubota, 1987). IL-1β 

could also significantly alter the expression of variety of inflammatory mediators such as 

cytokines and matrix metalloproteinases and is also known stimulator of p38 MAPK 

(Feldmann et al., 1996). Therefore it can be speculated that CSiO2-induced IL-1β release 

can induce MARCO expression on the IM. Another possibility is that CSiO2 directly 

stimulates IM MARCO expression upon translocation to the interstitial compartment 

while, TiO2 does not. CSiO2 stimulates the p38 MAP kinase pathway (data not shown) 

consistent with this proposed mechanism of induction of MARCO expression (Ovrevik et 

al., 2004). Nevertheless, the increased MARCO expression on IM from CSiO2 exposed 

mice substantiates the important role of MARCO in immune response against fibrogenic 

CSiO2 particles.  
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Analysis of AM from whole lung lavages of MARCO-/- mice showed that 

MARCO-/- AM have significantly diminished ability to bind CSiO2 particles compared to 

AM from WT mice (Figure 18A-B). The attenuation of binding and subsequent clearance 

of CSiO2 from the lung caused increased microvascular permeability and inflammation in 

MARCO-/- mice as measured by total protein levels in the lavage fluid and increase in 

lung lavage cellularity, compared to WT mice (Figure 19 and 20A). Furthermore, chronic 

three-month CSiO2 exposure in MARCO-/- mice led to significant increase in lung wet 

weight, a marker of persistent inflammation and pulmonary edema (Figure 22E). 

An important first step in acute pulmonary inflammatory response to inhaled 

CSiO2 particles involves an influx of inflammatory cells (Bowden and Adamson, 1984). 

Staining the lavage cells for AM, DC and neutrophil cell surface markers following 

CSiO2 exposure demonstrated a significant increase in number of all the three immune 

cells types (Figure 20B-D). After CSiO2 exposure, there was significant increase in 

number of neutrophils in MARCO-/- mice as compared to WT mice (Figure 20B). 

Previous studies have reported that another Class A family member SR-A is an important 

player in CSiO2 induced inflammatory response. Similar to MARCO-/- mice, the SRA-/- 

mice developed enhanced neutrophilia and inflammatory response following CSiO2 

exposure (Beamer and Holian, 2005a). Although the exact role of neutrophils in 

development of fibrosis is not known, studies suggest that the duration of neutrophil 

activation correlates with pulmonary fibrosis (Jones et al., 1998).  

The CSiO2 induced inflammatory response is triggered by cytokine release by 

AM and other immune cells in the lung (Rao et al., 2004; Vanhee et al., 1995). The 

cytokines and growth factors secreted following CSiO2 exposure can recruit 
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inflammatory cells into the lung and propagate the inflammatory response and lung injury 

(Hamilton et al., 2008).  Among the cytokines secreted, TNF-α and IL-1β have been 

extensively studied and shown to be important in pathogenesis of CSiO2. (Driscoll et al., 

1990; Srivastava et al., 2002). In the present study, both TNF-α and IL-1β levels were 

increased in MARCO-/- mice 24 h after CSiO2 exposure as compared WT mice (Figure 

21 A-B). Additionally, IL-6 levels in the lavage fluid from MARCO-/- mice was 

significantly increased 24 h post CSiO2 instillation as compared to WT mice (Figure 

21C). IL-6 is a multifunctional plieotropic cytokine secreted by immune and non-immune 

cells. It has numerous physiological functions in acute phase response as well as chronic 

inflammation (Hodge et al., 2005). These results demonstrate that MARCO-/- mice show 

exacerbated Th1 and Th2 response following CSiO2 exposure. Furthermore, it has been 

reported that IL-1β, TNF-α and IL-6 can mediate inflammatory pathology in many 

autoimmune diseases, and antibodies or receptor antagonists of these inflammatory 

cytokines are effective therapeutics. (Chatzantoni and Mouzaki, 2006; Ishihara and 

Hirano, 2002). In this regard, MARCO-/- mice have been reported to show increased 

response to self and antigens and have increased risk of development of autoimmune 

disease (Wermeling et al., 2007).  

The above results demonstrated that the absence of MARCO increases the acute 

response to CSiO2 exposure. The effect on the chronic response is also important to 

determine. In fact, the increased inflammatory response observed in MARCO-/- mice 

following acute (24 h) exposure to CSiO2 correlated with an increase chronic 

inflammatory response as evidenced by changes in wet weight (Figure 22E) and 

histopathological changes three months post-instillation (Figure 22 B and D). Taken 
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together, these studies support the notion that MARCO is critical for CSiO2 clearance, as 

well as acute and chronic pulmonary inflammation. 

Most of the current information on the role of MARCO comes from studies using 

murine models with little information from humans about variability of MARCO 

expression or association with lung inflammation or fibrosis. MARCO has been reported 

to be expressed on human AM (Arredouani et al., 2005) and polymorphisms in MARCO 

might exist. The SRCR domain of human MARCO has been shown to bind CSiO2 

particles avidly (previous chapter). We hypothesized that using the CSiO2 binding 

property of MARCO it might be possible to facilitate uptake of CSiO2 particles using a 

combination of recombinant MARCO with an antibody against the recombinant MARCO 

through an alternative pathway or receptor. By coating the CSiO2 with recombinant 

MARCO protein (rMARCO) we rendered the CSiO2 particles unrecognizable by 

MARCO expressed on AM from healthy WT mice (Figure 23). As a result, we created an 

in vitro model similar to AM deficient in MARCO expression or expressing aberrant 

forms of MARCO protein and hence deficient and uptake and clearance of CSiO2 

particles (Figure 23). Subsequently, the rMARCO coated CSiO2 particles were treated 

with anti- His tag antibody creating an antigen-antibody complex. There was a significant 

increase in uptake of CSiO2, rMARCO and anti His antibody complex that was blocked 

by pretreating the cells with FcBlock (Figure 23) highlighting that the complex was now 

bound by Fc receptors on the AM by recognizing the Fc portion of anti-His antibody 

complex (Figure 24). Pretreatment of CSiO2 particles with only anti-His tag antibody or 

FcBlock did not inhibit the binding of CSiO2 particles.  
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In summary, this study lead to some key findings, first, MARCO expression was 

unregulated in interstitial macrophages following CSiO2 exposure. Second, MARCO 

plays a role in clearance of CSiO2 particles from the lung. Third, MARCO-/- mice exhibit 

increased acute and chronic inflammation following CSiO2 exposure and lastly, 

facilitating uptake of CSiO2 particles by an alternative route might have therapeutic 

implications in subjects having diminished clearance mechanisms. Together, these 

findings provide evidence of an important role of MARCO in regulation of inflammation 

response in vivo. 
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Figure 24: Schematic representation of proposed model for antibody mediated 

CSiO2 clearance.  
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APPENDIX A 

PRELIMINARY DATA ANALYZING MECHANISTIC ROLE OF MARCO IN 

CRYSTALLINE SILICA-INDUCED APOPTOTIC SIGNALING 

 

5.1. INTRODUCTION  

Free crystalline silica (CSiO2), is one of the most common minerals found in the 

earth’s crust (Lalmanach et al., 2006; Rosenman et al., 2003). It is found in sand, rocks 

such as granite, sandstone and metal quarries. Respirable CSiO2 is an ubiquitous 

environmental and occupational fibrogenic agent capable of inducing inflammation, 

fibroblast proliferation and excess collagen production resulting in lung fibrosis called 

silicosis (Craighead et al., 1988; Green and Vallyathan, 1996). Silicosis is a prevalent 

health problem throughout the world particularly in the developing nations (Craighead et 

al., 1988; Green and Vallyathan, 1996).  

Basic and clinical scientists have extensively studied silicosis and yet little is 

known about the crucial molecular mechanisms that initiate and propagate the process of 

injury, inflammation and scarring. Although the pathophysiological mechanisms remain 

unclear, it has been established that the lung responds to CSiO2 by massive enrollment of 

AM and other immune cells and triggering an inflammatory cascade of reactions 

(Lalmanach et al., 2006; Schmidt et al., 1984).  

Alveolar macrophages (AM) are primarily responsible for binding, ingestion and 

ultimately clearance of inhaled particulate matter (Chen and Shi, 2002 May-Jun; 

Srivastava et al., 2002 Feb). Upon inhalation of CSiO2 particles, AM engulf CSiO2 and 

undergo apoptosis. These apoptotic bodies and free CSiO2 are engulfed by other AM, 
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which either secrete proinflammatory cytokines or undergo apoptosis. This cycle of 

engulfment, apoptosis and cytokine secretion continually lead to prolonged inflammation 

and is considered to be important in the development of fibrosis (Rimal et al., 2005 Mar; 

Srivastava et al., 2002 Feb). Previous studies in our laboratory have shown that the 

scavenger receptor, MARCO plays a vital role in CSiO2 binding and apoptosis in AM 

from C57Bl/6 mice (Hamilton et al., 2006). However, mechanistic details of role of 

MARCO in CSiO2 induced apoptosis remain elusive. Previously reported observation 

that absence of MARCO prevents CSiO2 binding and apoptosis, suggests a mechanistic 

role of MARCO in the process (Hamilton et al., 2006).  

Aggregation of receptors upon binding to specific ligands has been reported in 

case of a large number of receptors including the TCR/CD3 complex, CD40, TNF-R 

(Boniface et al., 1998; Chan et al., 2000; Vidalain et al., 2000). Ligand induced receptor 

clustering results in trans-activation of receptor-associated signaling molecules. This 

further induces the local assembly of the signaling elements that transmit the extracellular 

signals into the cell. Most of the known ligands for MARCO such as CSiO2, AcLDL are 

relatively much larger in size than MARCO and it can be speculated that MARCO 

ligands can trigger clustering of MARCO facilitating enabling binding and uptake of 

large ligands and particles. Further, studies have demonstrated that ligand binding to 

receptor leads to activation of acid sphingomyelinase (ASM) an enzyme that catalyzes 

the conversion of membrane sphingomyelin to ceramide, resulting in release of ceramide 

in outer leaflet of the cell membrane (Cremesti et al., 2001; Grassme et al., 2003; 

Grassme et al., 2001b; Grassme et al., 2001a).  

Ceramide is an endogenous sphingolipid and acts as second messenger in ASM 
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mediated apoptosis (Kolesnick and Golde, 1994; Obeid et al., 1993). Various ligands and 

environmental toxins such as TNF and lipopolysaccharide (LPS) utilize ceramide to 

induce apoptosis in the target cells (Thomas et al., 2000; Zhang et al., 2001). Further, 

some of the downstream signaling events in the apoptotic sphingomyelin pathway 

involve ceramide induced mitochondrial dysfunction, and activation of mitogen activated 

protein kinases (MAPK) such as SAPK/JNK and p38 (Kong et al., 2005; Xia et al., 

1995).  

Preliminary studies in our laboratory have also shown that ASM inhibitors; 

imipramine and desipramine partially block CSiO2 induced apoptosis in AM. Based on 

the observation that MARCO is an important receptor for CSiO2 binding and uptake 

(Hamilton et al., 2006), we hypothesized that the binding of CSiO2 to MARCO might 

lead to activation of ASM and generation of ceramide leading to apoptosis. The present 

study investigated the role of ASM in MARCO mediated apoptosis using two in vitro 

models, CHO cells transfected with human MARCO and murine bone marrow derived 

macrophages.  

 

5.2. MATERIALS AND METHODS 

Mice 

Breeding pairs of C57Bl/6 mice were originally purchased from The Jackson 

Laboratory (Bar harbor, ME, USA). All mice were maintained in the University of 

Montana specific pathogen-free (SPF) laboratory animal facility. The mice were 

maintained on an ovalbumin-free diet and given deionized water ad libitum. The 
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University of Montana Institutional Animal Care and Use Committee (IACUC) approved 

all animal procedures.  

Cell Culture  

Chinese Hamster Ovary (CHO) cells (American Type Culture Collection, 

Manassas, VA) were cultured in HAM’s F-12 medium with 2 mM L-glutamine 

(Mediatech Inc., Herdon, VA) containing 10% heat-inactivated fetal bovine serum (FBS), 

100 IU penicillin, 100 µg/ml streptomycin (Mediatech Inc). CHO cells were transiently 

transfected with pcDNA 3.1 (E), full length human MARCO (M). All transfections were 

conducted using Lipofectamine 2000 (Invitrogen, Carlsbad, CA) as per manufacturer’s 

instructions. For experiments, transiently transfected CHO cells were gently harvested 

24-30 h post-transfection using trypsin-EDTA. Transfection efficiency of the full length 

MARCO was determined to be 30-40 % by staining the cells for MARCO expression 

using human MARCO specific antibody (PLK-1) and isotype control followed by 

treatment of FITC conjugated secondary antibody. Analysis was done using FACS Aria 

flow cytometer using Diva Software (version 4.1.2; BD Biosciences). All the experiments 

were conducted within 24-30 h following transient transfections.  

Bone marrow derived macrophages (BMDMs) 

Bone marrow was aspirated from femurs and tibiae of C57Bl/6 mice (6-10 weeks) 

using a 3 ml syringe with RPMI culture media supplemented with 10% heat-inactivated 

fetal bovine serum (FBS), 100 IU penicillin, 100 µg/ml streptomycin (Mediatech Inc.). 

Following overnight stromal elimination, 15 x 106 non-adherent cells were transferred to 

new flasks, supplemented with murine recombinant macrophage colony-stimulating 



 142 

factor; final concentration 10 ng/ml (R & D Systems, Minneapolis, MN, USA). 

Following 4 and 7 days, the media was replenished with MCSF (concentration 5 ng/ml). 

The cells were allowed to differentiate into macrophages for 10 days before use and the 

adherent cells were gently scraped and stained for macrophage cell surface markers 

(CD11b and F480) and non-adherent cells were discarded. Cell viability was determined 

to be >90 % by trypan blue exclusion before treatments.  

Particle  

Crystalline silica (CSiO2) or Min-U-Sil-5 obtained from Pennsylvania Sand Glass 

Corporation (Pittsburg, PA) was acid washed in 1 M HCl at 100°C, to remove metals and 

microbial contamination. The CSiO2 particles were then washed three times with sterile 

water and dried at 200°C to remove all water. The stock suspension of CSiO2 in media 

was dispersed by sonic disruption for 1 min before each experiment.  

Cytotoxicity assays 

Transfected CHO cells were harvested as described above and 1x105 were plated 

in 96-well plates and treated with CSiO2 (equivalent to 25 or 50 µg/cm2) for 24 h at 37°C. 

For experiments using BMDM, the cells were gently harvested as described above and 1 

x106 cells were treated with or without 2 µg/ml of MARCO Antibody (ED31; Serotec, 

Raleigh, NC, USA) for 20 min at 37°C in suspension culture followed by treatment with 

200 µg/ml of CSiO2 for 15 min at 37°C in suspension. These CSiO2 treated BMDM were 

then plated in 96-well for 4 h. The cell viability of CHO cells and BMDM were analyzed 

using Cell Titer Blue assay (Promega, Madison, WI) following indicated incubations 

with CSiO2. The Cell titer blue assay is based on the ability of living cells to convert a 
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redox dye  (reazurin) into a fluorescent end product (resorufin). Loss of cell viability is 

accompanied with loss in metabolizing capacity of cells therefore non-viable cells do not 

convert reazurin to resorufin, which can be detected using spectroflurometer. After the 

incubation step, data were recorded using a plate-reading fluorometer.  

Cell surface expression of MARCO on BMDM 

Fully differentiated BMDM, were harvested gently from T-75 using tissue-culture 

flasks as described above and cultured with or without LPS (10 ng/ml), IFN-γ (12 ng/ml) 

and IL-4 (10 ng/ml) in presence of MCSF (10 ng/ml). Cells, (1x105) were incubated with 

FcBlock, rat anti-mouse CD16/CD32 (BD Pharmingen, San Jose, CA) diluted 1:100 PBS 

containing 0.01% sodium azide and 1 % FBS buffer (PAB) for 20 minutes on ice. One 

microgram of MARCO FITC was added to the cells and incubated at room temperature 

for one hour. One microgram of macrophage cell surface markers, CD11b PerCP Cy5.5 

and F480 APC were added and incubated on ice for 30 min. Cells were washed with PAB 

and analyzed immediately. Analysis was done using FACS Aria flow cytometer using 

Diva Software (version 4.1.2; BD Biosciences). Live-dead cell discrimination was done 

using Hoechst 33258 (Invitrogen, Carlsbad, CA). Compensation of the spectral overlap 

for each fluorochrome was calculated using anti-rat/ hamster Ig compensation beads (BD 

Biosciences). 

Assay for acid sphingomyelinase activity 

Transfected CHO cells and BMDM were harvested as described above and 1x106 

were treated with CSiO2 equivalent to 50 µg/cm2 and 200 µg/ml for 30 min at 37°C, 

respectively in tumbling suspension culture. The cells were lysed using a cell lysis buffer 
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containing 1 % Triton X-100 and protease inhibitors (pH 7.4). The lysates were then 

diluted (1:2) using 50 mM sodium acetate buffer (pH 5.5) and analyzed for acid 

sphingomyelinase (ASM) activity using the Amplex red sphingomyelinase assay kit 

(Invitrogen, Carlsbad, CA). In this enzyme-coupled assay, sphingomyelinase activity is 

monitored indirectly using amplex red reagent, a sensitive fluorogenic probe for H2O2. 

First, sphingomyelinase hydrolyses the sphingomyelin to yield ceramide and 

phosphorylcholine. Phosphorylcholine is then hydrolyzed by alkaline phososphatase to 

choline. Choline is oxidized by choline oxidase to betaine and H2O2. Finally, H2O2, in the 

presence of horseradish peroxidase, reacts with amplex red reagent in a 1:1 stoichiometry 

to generate the fluorescent product, resorufin, which was measured by a plate-reading 

fluorometer. Positive controls included reaction mixture containing sphingomyelinase or 

20 mM H2O2 solution or BMDM treated with LPS 10 ng/ml. 
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5.3. RESULTS 

CSiO2 induced loss of cell viability in MARCO transfected CHO cells 

To investigate whether human MARCO expression in CHO cells increases 

susceptibility to CSiO2 induced cytotoxicity, transfected CHO cells were treated with 

varying concentrations of CSiO2 for 24 h in 96-well culture plates. The cell titer blue 

assay revealed increased loss of cell viability in response to CSiO2 in MARCO 

transfected CHO cells as compared to empty vector transfected CHO cells (Figure 25). 

Although, there was a dose response effect of CSiO2 on decreased cell viability in 

MARCO transfected cells only 50 µg/cm2 dose showed a statistically significant loss of 

viability in MARCO transfected cells. The empty vector transfected cells did not show 

loss in cell viability following CSiO2 exposure. These results were consistent with the 

observation that MARCO transfected CHO cells undergo significant loss in cell viability 

following CSiO2 exposure (Chapter 1, page 54). 
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Figure 25: Crystalline silica induced loss of cell viability in MARCO transfected 

CHO cells 

Following 24 h of exposure to 25 or 50 µg/cm2 of CSiO2 there is a dose-dependent 

decrease in cell viability in MARCO transfected (M) cells that reaches significance at 50 

µg/cm2. Empty vector transfected (E) control show no difference in viability. Results 

represent Mean ± SE, n=3. **, p<0.01, compared to untreated MARCO transfected cells 

by Bonferroni’s post hoc test. 
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CSiO2- induced acid sphingomyelinase activity in CHO cells 

Previous work from our laboratory showed that inhibitors of acid 

sphingomyelinase (ASM), desipramine and imipramine attenuate CSiO2-induced 

apoptosis of alveolar macrophages (AM). To assess whether ASM is activated following 

CSiO2 exposure, empty vector and MARCO transfected CHO cells were treated with 

CSiO2 for 30 min in 6-well plates. Results from amplex red sphingomyelinase assay 

demonstrated that there was no increase in ASM activity in lysates from CSiO2 treated 

MARCO expressing CHO cells (Figure 26). These findings suggest that the apoptotic 

sphingomyelin pathway involving ASM induced ceramide generation may not be 

important in CSiO2-induced and MARCO mediated apoptosis. Alternatively, another 

possibility is that human MARCO transfected CHO cells May not be a good model for 

measuring CSiO2 induced ASM activity, since ASM mediated apoptosis is an apoptotic 

mechanism mainly found in macrophages (Falcone et al., 2004; Wang et al., 2007). 
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Figure 26: CSiO2 does not increase acid sphingomyelinase activity in MARCO 

transfected CHO cells. 

Empty vector and MARCO transfected CHO cells were treated CSiO2 (200 µg/ml) for 30 

min and lysed in an acidic cell lysis buffer. Analyzing the ASM activity in the lysates 

demonstrated that CSiO2 did not increase ASM activity in both control and MARCO 

transfected cells. Results represent mean ± SE. Sample size n=3.  
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MARCO expression on BMDM 

To study the role of MARCO in CSiO2 induced apoptosis in more relevant 

cellular model, bone marrow derived macrophages (BMDM) from C57Bl/6 mice were 

utilized. Murine BMDM are fully differentiated macrophages developed using 

mononuclear phagocyte precursor cells from the bone marrow in the presence of 

macrophage colony stimulating factor (MCSF) (Pfau et al., 2004b).  Unlike primary 

macrophages, the BMDM can be maintained in culture for a longer time and would be a 

convenient model to study CSiO2 induced MARCO mediated signaling mechanisms. 

To further validate the use of BMDM from C57Bl/6 mice, we analyzed the cell 

surface expression of MARCO on differentiated BMDM. Flow cytometric analysis 

revealed that fully differentiated BMDM expressed MARCO as indicated by the 

significant increase in mean channel fluorescence in MARCO antibody treated BMDM 

as compare to isotype treated controls (Figure 27A). In order to analyze the effect of 

various cytokines and antigens on MARCO expression and create a more efficient model 

for studying the role of MARCO in CSiO2 induced macrophage apoptosis, the BMDM 

were stimulated with IL-4, IFNγ or as a positive control, LPS (Meng et al., 2006). MCSF 

differentiated BMDM show slight, but a significant increase following IL-4 stimulation, 

while IFNγ did not induce any increase in MARCO expression over basal values (Figure 

27 B). As expected, LPS was a potent inducer of MARCO expression (Figure 27B). 

However, LPS stimulated BMDM could not be used as a model for measuring CSiO2 

induced ASM activity, because LPS is known to be a stimulator of ASM in macrophages 

(Sakata et al., 2007). 
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Figure 27: Regulation of MARCO expression on BMDM 

(A) C57Bl/6 BMDM stained with MARCO-specific antibody, ED31 showed increase in 

mean fluorescence intensity as compared to the isotype treated controls. (B) BMDM 

differentiated in presence of MCSF were stimulated overnight with IL-4 (10 ng/ml), IFNγ 

(12 ng/ml) and LPS (10 ng/ml, positive control). Significant increases in the percent cells 

expressing MARCO was observed following IL-4 treatment, but not with IFNγ. As 

expected, LPS treatment leads to significant increase in MARCO expression. *** 

p<0.001, compared to controls by Bonferroni’s post-hoc test. n=3. 
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Effect of CSiO2 treatment on acid sphingomyelinase activity in BMDM 

Since LPS stimulated BMDM would prove a complicated model to study CSiO2 

induced signaling mechanisms and the other cytokine stimulations did not lead to a useful 

increase in MARCO expression, the signaling studies were performed using unstimulated 

BMDM. In order to test the hypothesis that CSiO2 exposure leads to an increase in ASM 

activity, which may further contribute to increase in ceramide levels and subsequent 

cytotoxicity, BMDM for C57Bl/6 mice were treated with or without CSiO2 for 30 min 

and the ASM activity was measured in the lysates. Similar to transfected CHO cells, no 

significant increase in ASM activity was observed following CSiO2 exposure in the 

murine BMDM model (Figure 28A). Unfortunately, the results are not surprising 

considering the fact that only 10-15 % of MCSF differentiated BMDM show MARCO 

expression. This observation was further supported with the results showing that 

pretreatment of BMDM with MARCO antibody does not lead to inhibition of CSiO2 

mediated loss in cell viability measured by cell titer blue assay 4 h following exposure 

(Figure 28B). Taken together, the results could not be used to test the role of that the 

sphingomyelin pathway of apoptosis in CSiO2 induced macrophage apoptosis. In order to 

elucidate MARCO mediated signaling events in response to CSiO2, an appropriate cell 

model such as immortalized primary cells from C57Bl/6 and MARCO-/- mice or a cell 

line, which constitutively expresses high level of MARCO needs to be used. 
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Figure 28: Role of MARCO in CSiO2 induced macrophage apoptosis 

(A) CSiO2 treatment for 30 min did not lead to an increase in ASM activity in BMDM as 

compared to control (B) MARCO antibody pretreatment did not inhibit CSiO2 induced 

loss of cell viability. Results represent mean ± SE. ***, p<0.001, compared to untreated 

and only MARCO antibody treated controls. n=3. 
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5.4. CONCLUSION 

Scavenger receptor MARCO has been reported to be an important alveolar 

macrophage (AM) receptor in crystalline silica (CSiO2) uptake and cytotoxicity 

(Hamilton et al., 2006). Although the role of MARCO in CSiO2 -induced cytotoxicity has 

been reported, the signaling molecules activated following CSiO2 binding to MARCO are 

as yet unknown (Hamilton et al., 2006). Activation of acid sphingomyelinase (ASM), an 

enzyme responsible for producing a pro-apoptotic second messenger ceramide has been 

shown to promote macrophage apoptosis following exposure to various environmental 

challenges such as bacteria, lipopolysaccharide and UV radiation (Kolesnick and Golde, 

1994). Previous literature reports and studies in our laboratory have shown that 

imipramine and desipramine: inhibitors of ASM partially block CSiO2-induced apoptosis 

in AM (unpublished data) and MH-S cells (Thibodeau et al., 2003). The primary 

objective of this study was to understand the role of ASM in apoptosis induced following 

MARCO-CSiO2 interaction. The present study suggests that activation of ASM may not 

be an early event in CSiO2-induced apoptosis in C57Bl/6 BMDM. Additionally, the 

current study further substantiates the need for development of appropriate cell models to 

study the signaling events triggered following CSiO2-MARCO interactions. 

Macrophages express a variety of pattern recognition receptors such as TLR, 

different members of scavenger receptors, C-type lectins and β2-integrins. The presence 

of wide range of pattern recognition receptors with overlapping functions on 

macrophages makes it difficult to study signaling events triggered following CSiO2- 

MARCO interaction.  An in vitro cell model containing CHO cells transfected with 

MARCO seemed to be a good cellular model to study the MARCO mediated signaling 
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mechanism. Since, the number of pattern recognition receptors that might have 

overlapping binding properties with MARCO are absent in CHO cells. In accordance to 

role of MARCO in CSiO2 binding and cytotoxicity (Hamilton et al., 2006), studies 

conducted in MARCO transfected CHO cells showed that 24 h treatment with CSiO2 lead 

to a dose-dependent loss in cell viability as compared to empty vector transfected 

controls (Figure 25).  

The sphingomyelin pathway of apoptosis involves stimuli-driven activation of 

ASM, which, further increases ceramide concentration in the cells and triggers the 

apoptotic machinery. It has been reported that ASM inhibitors significantly prevent cell 

death in a macrophage cell line in response to CSiO2 (Thibodeau et al., 2003). 

Concurrently, previous studies from our laboratory show that ASM inhibitors attenuate 

CSiO2-induced AM apoptosis. Since MARCO is a predominant receptor for CSiO2 

binding (Chapter 1 and 2), in order to determine the role of MARCO-CSiO2 interaction in 

ASM activation, the lysates from CSiO2 treated MARCO expressing CHO cells were 

analyzed for ASM activity. The results indicated that MARCO transfected CHO cells did 

not show an increase in ASM activity following CSiO2 exposure (Figure 26). These 

results suggested that in contrast to AM, ASM is not an essential component of CSiO2-

induced apoptosis in CHO cells. Therefore, further studies were conducted using bone 

marrow derived macrophages (BMDM) from C57Bl/6 mice, which have being 

previously found to be phenotypically similar to AM (Migliaccio et.al., 2005). 

To examine the suitability of murine BMDM, as a system for studying role of 

MARCO in CSiO2 induced cytotoxicity, the expression of MARCO on C57Bl/6 BMDM 

was analyzed. Staining the BMDM for MARCO expression revealed that only 10-15% of 
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BMDM express MARCO constitutively (Figure 27B). In order to increase the MARCO 

expression and create a better model for mechanistic studies, the BMDM were cultured 

with cytokines such as IFNγ and IL-4, while LPS was used as positive control. The 

different proinflammatory cytokines had little or no effect on MARCO expression. IL-4 

induced slight but significant increase in the MARCO expression on BMDM while, IFNγ 

had no effect (Figure 27B). As expected, LPS had the greatest effect on induction of 

MARCO expression (Figure 27B). Despite the strong effect of LPS on MARCO 

expression, BMDM stimulated with LPS could not be used for studying CSiO2 induced 

apoptosis, as LPS alone is known to stimulate ASM activity in macrophages (Sakata et 

al., 2007). In the light of above observations, the unstimulated BMDM were used to 

investigate the role of sphingomyelin pathway in CSiO2-induced apoptotic signaling. 

Pretreating C57Bl/6 BMDM with MARCO specific antibody did not inhibit CSiO2-

induced apoptosis (Figure 28B). These results were consistent with the low constitutive 

expression of MARCO on C57Bl/6 BMDM and do not diminish the importance of 

MARCO in CSiO2 binding and cytotoxicity (Figure 27 and Chapter 1). Lack of a good 

cellular model with abundant constitutive MARCO expression limits the studies of 

MARCO- mediated signaling events in response to CSiO2. Also, the studies are further 

complicated by relatively significant expression of another family member of MARCO 

on BMDM; SRA I/II that has been previously shown to bind CSiO2 particles and is 

expressed at relatively higher levels on BMDM (data not shown) (Hamilton et al., 2000). 

Additionally, CSiO2 particles are also hypothesized to be phagocytozed by a non-receptor 

mediated pathway (Hamilton et al., 2006).  
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Similar to MARCO-transfected CHO cells, ASM activity measured in the lysates 

from control and CSiO2-treated BMDM lysates was not unchanged at 30 min following 

CSiO2 exposure (Figure 28A). Further studies at different time points need to be 

examined to analyze the role of ASM in CSiO2-induced macrophage apoptosis. An 

important obstacle in studying the mechanistic role of MARCO in CSiO2 induced 

apoptosis is the lack of a macrophage cell line with high level of MARCO expression. 

Alternative approaches could focus on creating stably transfected macrophage cell lines 

using viral vectors, since, transfection of macrophage cell line using lipofectamine have 

not generated a stably transfected cell line to date. 

MARCO is expressed at relatively low levels on macrophages in an aseptic 

environment but the expression is dramatically increased in response to infection or an 

immunological challenge in vivo (Chapter 3, (Dahl et al., 2007). Therefore it is difficult 

to develop a system that models, MARCO expression patterns and signaling events 

triggered following MARCO-CSiO2 interaction. Nevertheless, the results from this study 

suggest that ASM and hence the sphingomyelin pathway is not important for MARCO-

mediated CSiO2-induced apoptosis. Further studies using an appropriate cell model with 

sufficient constitutive expression of MARCO will help confirm the observations from the 

current study.  
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SUMMARY  

Numerous pulmonary disorders such as silicosis or pulmonary fibrosis, chronic 

obstructive pulmonary disorders  (COPD) as well as systemic immune deficits have been 

associated with occupational exposure to inhaled crystalline silica (CSiO2) (Churchyard 

et al., 2004; Englert et al., 2000; Madl et al., 2008). Although the anatomical changes 

following CSiO2 exposure been well characterized, the molecular mechanisms underlying 

CSiO2-induced disease outcomes are not yet completely understood. Following 

deposition of CSiO2 in the respiratory tract, the resident alveolar macrophages (AM) 

trigger an acute influx of immune cells from the periphery (Bowden, 1987; Driscoll et al., 

1990). Like many other lung diseases such as emphysema and asthma, this inflammatory 

response plays an important role in development of silicosis. Very few studies have 

focused on directly identifying the AM receptors involved in initial recognition of CSiO2 

and the implications of this receptor-CSiO2 interaction on subsequent inflammatory 

response. Therefore, this project mainly focused on identifying MARCO as the AM 

receptor that recognizes and clears the CSiO2 particles from the lungs. Further the goals 

of this project were to identify the particle binding sites of MARCO and to understand 

the physiological role of MARCO in CSiO2-induced immunopathological changes. 

 Apoptosis or programmed cell death of AM has been shown to be an important 

player in CSiO2 induced pulmonary inflammation (Hamilton et al., 2008). A current 

paradigm in the field is that phagocytosis of CSiO2 results in AM apoptosis, with 

subsequent release of intracellular CSiO2 from dying cells, this results in multiple 

ingestion-reingestion cycles, which perpetuates the disease process (Rimal et al., 2005). 

Previous studies from our laboratory have suggested the role of two splice variants of 
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scavenger receptor A SRA I and II (SRAI/II), in CSiO2-induced apoptosis (Beamer and 

Holian, 2005a; Chao et al., 2001). Studies conducted to determine the relative 

contribution of SRA I/II and MARCO in CSiO2 uptake and cytotoxicity showed that 

MARCO was a predominant receptor responsible for binding of CSiO2 particles and 

subsequent cytotoxicity. In vitro studies showed that AM from MARCO-/- and MARCO-/-

/SRA I/II-/- mice did not undergo loss of cell viability or apoptosis following CSiO2 

exposure when compared to WT AM. Further, the uptake of CSiO2 by MARCO-/- AM in 

vitro was significantly inhibited relative to C57Bl/6 WT AM. Consistent with the results 

obtained from MARCO-/- mice, pretreatment of WT AM with MARCO antibody 

diminished the CSiO2 uptake and efficiently blocked the loss of cell viability and 

apoptosis. In order to confirm the relevance of murine data to humans, an in vitro model 

comprising of CHO cells transfected with human MARCO was developed. As expected, 

the MARCO transfected cells efficiently bound CSiO2 as compared with the control 

empty vector transfected cells. The results from the cytotoxicity assay correlated with the 

binding studies with only MARCO transfected cells undergoing apoptosis.  

Previous reports from our laboratory showed that in vitro binding of CSiO2 by 

MARCO+ AM, increases their antigen presenting (APC) activity. Therefore, studies were 

conducted to investigate the functional consequences of impaired CSiO2 binding by 

MARCO-/- AM. The changes in APC activity were assessed by measuring AM-induced T 

cell cytokine release in co-culture experiments (Hamilton et al., 2001; Migliaccio et al., 

2005). The results demonstrated that characterized ability of CSiO2-treated MARCO+ 

AM to stimulate increased T cell cytokine (IL-13, IFN-γ) release in response to antigens 
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was attenuated in MARCO-/- AM. Taken together, these results identified MARCO the 

predominant receptor for CSiO2 binding and cytotoxicity.  

One of the intriguing observations from this study was that a commonly used 

control particle titanium dioxide (TiO2), which is a chemically similar to CSiO2, had no 

effect on the APC activity of AM. Additionally, it is well accepted that TiO2 does not 

cause pulmonary fibrosis. Also, the acute inflammatory response developed following 

TiO2 exposure is reversible and does not lead to any systemic effects (Driscoll et al., 

1990). Previous reports have identified TiO2 as a ligand for MARCO (Arredouani et al., 

2005). In order to examine the factors that contribute to contrasting outcomes following 

CSiO2 and TiO2 exposure (despite binding to a common receptor MARCO), we analyzed 

the different factors affecting the binding of these particles to MARCO. We also 

investigated the role of MARCO in another non-fibrogenic particle, amorphous silica 

(ASiO2) binding and examined the effect the three particles on AM viability. Previous 

reports and results from current study showed that all three particles bound to MARCO 

but only CSiO2 was toxic (Iyer et.al., 1996b).  

Various truncated MARCO mutants were used to identify the binding site of 

CSiO2, TiO2 or ASiO2 with a notion that differences in the individual particle-binding site 

might lead to varying conformational changes in MARCO and help explain the 

differences in signaling events. The results demonstrated that all three tested particles 

required the entire C-terminal cysteine rich (SRCR) domain of MARCO for binding. 

Nevertheless competitive binding studies conducted by pretreating MARCO transfected 

CHO cells with CSiO2 or TiO2 demonstrated that only CSiO2 blocked ASiO2 binding 

while, TiO2 did not. These observations suggest that CSiO2 and ASiO2 share a common 
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binding site while TiO2 might have subtle binding differences. Given the relatively large 

size of these particles compared with MARCO, these results are hard to explain however 

additional mutational analysis of specific amino acids will help detect the subtle 

differences in binding sites of these particles. Another notable observation was that 

divalent cations were necessary for TiO2 binding to MARCO while CSiO2 and ASiO2 

binding was not. This study brought to light important subtle differences in binding 

patterns of the toxic CSiO2 particles and non-toxic ASiO2 and TiO2. These differences 

may influence the conformational change in MARCO following individual particle 

binding and hence affect subsequent signaling mechanisms triggered by these particles. 

Studies conducted using C57Bl/6 (WT) and MARCO-/- mice post-CSiO2 

instillation demonstrated that absence of MARCO enhances both acute and chronic 

inflammatory response. The MARCO-/- mice demonstrated increase in number of AM, 

DC and more markedly neutrophils one day post CSiO2 instillation. Comparison of the 

cytokine levels in the lavage fluid from WT and MARCO-/- AM revealed that levels of 

IL-6 were significantly higher in MARCO-/- mice, also, TNFα an IL-1β were increased in 

MARCO-/- mice. These results clearly suggest that MARCO plays a protective role in 

CSiO2-induced pulmonary inflammation. Particle clearance from the lung is considered 

to be an important step in resolution of particle-induced inflammation (Adamson et al., 

1992). In order to test whether inability of MARCO-/- AM to bind CSiO2 leads to 

impaired clearance of CSiO2 from the lung, the CSiO2 uptake following intranasal 

instillations by AM from WT and MARCO-/- mice were compared. As expected 

MARCO-/- mice showed significantly diminished CSiO2 binding, which led to 

unsuccessful clearance of CSiO2 from the lung eventually contributing to increased lung 
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injury and inflammation. To study the effects of absence of MARCO on chronic 

inflammation and to explore if any compensatory mechanism attenuates the long term 

inflammation, lung wet weight and histomorphological analysis was performed three 

month post-CSiO2 instillations in WT and MARCO-/- mice. The results demonstrated that 

there was significant increase in wet lung weights of MARCO-/- mice and histological 

analysis showed a persistent increase in inflammatory cell infiltration in MARCO-/- mice 

as compared with WT mice. Therefore, the absence of MARCO leads to decreased CSiO2 

clearance from the lung, which further contributes to persistent increase in subsequent 

inflammatory response.  

Based on the above results we hypothesized that the CSiO2-induced inflammation 

may be reduced if the rate of clearance of CSiO2 from the lungs is increased (Figure 24). 

Therefore, we used the ability of MARCO to bind CSiO2 to enhance the clearance from 

the lungs. Soluble recombinant MARCO (rMARCO) protein containing the SRCR 

domain (CSiO2 binding site) of MARCO was used to coat CSiO2 particles. C57Bl/6 AM 

were then incubated with coated and uncoated CSiO2 particles. As expected the coating 

of CSiO2 particles with rMARCO significantly diminished uptake, as the rMARCO 

coated CSiO2 was no longer recognized by MARCO+ AM. In order to increase the 

recognition of CSiO2 particles by Fc receptors, the rMARCO coated CSiO2 particles were 

then coated with anti-His tag antibody to create a CSiO2, rMARCO and anti His antibody 

complex. This particle-protein complex was avidly bound by the Fc receptors on the AM 

by recognizing the Fc portion of anti-His antibody. These studies suggest that a chimeric 

protein with SRCR domain of MARCO and Fc portion of an opsonin may be used to 
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increase clearance of CSiO2 particles in subjects showing polymorphisms in MARCO. 

Future proof-of-concept in vivo studies are underway to test this hypothesis 

6.1. CONCLUSIONS 

Using healthy murine (C57Bl/6) AM and human MARCO transfected CHO cells, 

this project identified scavenger receptor MARCO as a predominant receptor in binding 

and cytotoxicity of CSiO2. Furthermore we identified the SRCR domain of MARCO as 

the binding site of three inorganic particles CSiO2, TiO2 and ASiO2. Additionally, the 

results indicate that all three tested particles show unique differences in binding 

requirements such as need for divalent cations, in binding to MARCO. These differences 

can form basis for the differences observed in the cytotoxic signaling events triggered by 

each particle.  

In vivo studies, using MARCO-/- mice confirmed the importance of MARCO in 

CSiO2-induced inflammatory response. MARCO-/- mice showed increased acute and 

chronic inflammation in response to CSiO2, marked by increased inflammatory cell 

infiltration, levels of inflammatory cytokines and persistent histomorphological changes 

as compared with WT (MARCO+) mice. In vivo binding studies indicated MARCO-/- 

mice exhibit diminished clearance of CSiO2 particles from the lungs as compared to WT 

mice. The prolonged contact CSiO2 particles with the epithelial cells and other immune 

cells leads to enhanced lung injury and chronic inflammation. Preliminary studies were 

conducted to increase uptake of CSiO2 particles by alternative mechanism (Fc 

Receptors). These studies can further form the basis for increasing the diminished 

clearance of CSiO2 particles from MARCO-/- mice. The results from this study give a 

positive direction to use of recombinant protein containing the SRCR domain of MARCO 
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to be used as therapeutic intervention in ameliorating CSiO2 induced inflammation and 

hence diseases such as silicosis and chronic obstructive pulmonary disease (COPD). 

Taken together, the results from this project establish MARCO as a key receptor in 

CSiO2 uptake and inflammation. The results also provide basis for designing chimeric 

proteins that may prove therapeutically important in CSiO2 induced disease outcomes. 

6.2. FUTURE DIRECTIONS 

Fibrogenic potential of a particle has been thought to be closely associated with 

the ability of the particle to induce apoptosis, particularly in AM. These studies have 

provided strong evidence for the role of MARCO in CSiO2-induced apoptosis. 

Elucidating the signaling events triggered by MARCO that lead to AM apoptosis will 

help understand the molecular details of role of MARCO in CSiO2 induced cytotoxicity 

and inflammation.  

This study examined the differences in binding of three chemically similar but 

pathologically different inorganic particles to MARCO, however, additional studies with 

specific amino acid mutations in SRCR domain need to be conducted to determine the 

amino acids important for binding of each particle. Proteomics studies such as circular 

dichroism and X-ray crystallography can be conducted to examine the conformational 

changes in MARCO following binding of CSiO2, ASiO2 and TiO2. Also analyzing TiO2 

binding using proteomic techniques in presence and absence of divalent cations which, 

were found necessary for TiO2 binding to MARCO, would provide further proof of 

concept. The ability of MARCO to bind two particles simultaneously (TiO2 and ASiO2) 

as well as the differences observed in binding requirements of toxic CSiO2 and nontoxic 
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TiO2 raise important questions regarding in vivo disease outcomes in case of co-exposure 

to these harmful particles. 

In vivo studies demonstrated that absence of MARCO diminished CSiO2 

clearance and consequently enhanced inflammation as compared to CSiO2 exposed WT 

mice. Therefore, studying the clearance or measuring the difference in rate of clearance 

between WT and MARCO-/- mice is of importance for understanding the CSiO2-induced 

pulmonary as well as systemic (autoimmune diseases) effects. Tracking clearance of 

fluorescent CSiO2 particles from the alveolar space to interstitium and then to lymph 

nodes using flow cytometry techniques will prove helpful. Additionally, in vivo studies 

analyzing the effect of pretreatment of recombinant MARCO (rMARCO) on 

inflammation in CSiO2 treated MARCO-/- mice need to be conducted. Further, 

understanding the mechanistic details of MARCO-CSiO2 interactions and elucidating the 

molecular details of MARCO mediated effects on clearance and CSiO2-induced 

inflammation will provide insight into mechanisms of other particulate matter and 

MARCO ligands in disease processes. 
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