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Increased nutrient inputs can cause shifts in plant community composition and 

plant functional traits, both of which affect ecosystem function. We studied community-

and species-level changes in specific leaf area (SLA), chlorophyll, leaf thickness, leaf 

toughness, plant height and leaf dry matter content (LDMC) in a full factorial nitrogen 

(N), phosphorus (P), potassium (K) fertilization experiment in a semi-arid grassland. 

Nitrogen was the only nutrient addition to significantly affect leaf functional traits, and N 

addition increased community weighted SLA by 19%, leaf chlorophyll content by 34%,

height by 26%, and resulted in an 11% decrease in LDMC while leaf thickness and 

toughness did not change significantly. At the species level, most species contributed to 

the community weighted trait and increased in SLA, chlorophyll, height and LDMC with

N. These intraspecific changes in functional traits account for 51% - 71% of the 

community-level increase in SLA and chlorophyll and plant height and decrease in 

LDMC. The remaining change is due to species abundance changes; the two most 

abundant species (Bouteloua gracilis and Carex filifolia) decreased in abundance under N 

addition while subdominant species increased in abundance. We also found annual 

variation in SLA, chlorophyll, plant height, and LDMC to be as important in influencing 
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traits as N addition, likely due to differences in precipitation. Aboveground net primary 

productivity (ANPP) did not change significantly with N addition. However, N addition 

caused a 34% increase in leaf area index (LAI) and a 67% increase in canopy chlorophyll 

density. We demonstrate that nitrogen-induced changes in functional traits and species 

abundances can have profound effects on community structure and function which can 

magnify changes ANPP as reflected by LAI and canopy chlorophyll density. Therefore, 

ANPP may underestimate ecosystem level changes in the canopy vegetation. 
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INTRODUCTION 

Human activities are altering the availability of resources in ecosystems 

worldwide and environmental change can cause shifts in plant community structure and 

function (Vitousek et al. 1997, Peters and Meybeck 2000, Baer et al. 2004). Many studies 

examining the effects of environmental change on plant communities focus on its isolated 

impact on community composition, functional trait values, or above ground net primary 

productivity (ANPP) (Stevens et al. 2004, 2015, Yavitt et al. 2011, Fay et al. 2015, 

Harpole et al. 2016). Few studies consider the simultaneous effect of environmental 

change on both species functional traits and abundances, and how these effects scale up 

to alter community structure and function (La Pierre and Smith 2014, Siefert and Ritchie 

2016). However, environmental change has the potential to indirectly alter ecosystem 

functions such as the cycling of water, nutrients, and energy by altering the physiology or 

morphology of individuals and structure of communities (Figure 1, Dı́az and Cabido 

2001, Suding et al. 2008). Therefore, considering each level of ecological organization is 

crucial for our understanding and prediction of how environmental changes scales to 

influence ecosystem functions.  

Studies using functional trait approaches have become widespread in plant 

community ecology due to their universality and potential for understanding mechanisms 

of community structure and function (Lavorel and Garnier 2002, McGill et al. 2006, 

Violle et al. 2007). Plant functional traits can be defined as morphological, physiological, 

or phenological features which represents an individual’s ability to grow, survive, or 

reproduce (Violle et al. 2007). Functional traits vary along environmental gradients and 

can provide insights to community and ecosystem function in a variety of ecosystems 
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(Dı́az and Cabido 2001, Wright et al. 2004, Violle et al. 2007, Cornwell and Ackerly 

2009). For example, specific leaf area (SLA, measured as leaf area per dry mass) is 

correlated with litter decomposition, photosynthetic capacity, growth, and productivity, 

which are factors that play key roles in ecosystem processes (Reich et al. 1997, Garnier et 

al. 2004). SLA has been shown to increase with increasing resource availability, which is 

related to faster growth, higher nutrient use, shorter lived leaves, and low water retention 

(Fonseca et al. 2000, Knops and Reinhart 2000, Wright et al. 2004). Leaf chlorophyll 

content itself is an indicator photosynthetic capacity, but is also highly correlated with 

leaf nitrogen content, which is important for plant growth and photosynthesis (Chapman 

and Barreto 1993, Wright et al. 2004). Plant height which is related to light capture, 

potential lifespan, and competitive ability, responds strongly to resource availability 

(Tilman 1987, Fonseca et al. 2000, Pérez-Harguindeguy et al. 2013). Leaf thickness, leaf 

toughness, and leaf dry matter content (LDMC), which are important for herbivory 

resistance and the retention of nutrients and water, tend to be higher in lower nutrient 

environments where leaves may be costly to replace (Choong et al. 1992, Cunningham et 

al. 1999, Pérez-Harguindeguy et al. 2013).  

Community-level functional responses can be measured by weighing species 

traits by abundance so as to reflect the functional characteristics of dominant species 

(Grime 1998). This ‘community weighted trait’ allows for comparisons of communities 

with different composition, and thus we can investigate community-level responses to 

environmental change. However, when scaled to the community level, it can be 

challenging to assess whether changes in community functional traits are due to 

intraspecific changes in functional traits, changes in species abundance (including species 
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turnover), or both. Studies have shown that intraspecific trait changes due to biotic and 

abiotic factors can be substantial (Albert et al. 2011). Nutrient additions also create novel 

environmental conditions in which certain species may gain a competitive edge, 

outcompeting resident species and causing diversity loss and declines in species richness 

(Stevens et al. 2004, Funk 2008, Harpole et al. 2016). This change in abundance may 

cause a shift in ecosystem functioning by changing which species dominates the 

community level response. Ignoring the effects of either of these factors can lead to a 

mischaracterization of the community response to environmental change and partitioning 

the effects of each can help us quantify their respective effects on ecological processes 

(Grime 1998, Bolnick et al. 2011). It is possible that community weighted traits may only 

reflect the responses of dominant species, although rare species have been shown to 

contribute novel traits to measures of community functional diversity and may influence 

ecosystem function (Jain et al. 2014). In addition, functional traits have been shown to 

vary consistently with the environment at multiple scales and across multiple species 

(Reich et al. 1997, Siefert and Ritchie 2016). Disentangling each of these effects could 

help predict how communities will respond to changes in nutrient inputs and understand 

the implications of these shifts.  

Leaf area index (LAI) or total leaf area per ground area (m2 m-2), and canopy 

chlorophyll density per square meter (mg m-2) are additional measures of community 

structure and function. LAI is calculated as the product of community weighted SLA and 

ANPP, and canopy chlorophyll density is the product of community weighted chlorophyll 

and LAI. Therefore, changes in SLA and ANPP for example, could cause a change of a 

larger magnitude in LAI, or counteract the change altogether. While ANPP reflects 
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accumulated aboveground biomass, LAI and canopy chlorophyll content better reflect 

ecosystem consequences of environmental change because they directly influence 

ecosystem ability to gain carbon and transfer water and energy (McWilliam et al. 1993, 

Chaves et al. 2002, Chapin et al. 2011). However, how ANPP and trait changes scale to 

canopy parameters such as LAI and canopy chlorophyll content is rarely examined.  

Resource availability, mainly nitrogen (N), limits growth of terrestrial vegetation 

in many ecosystems, and N limitation of ANPP is particularly widespread (Vitousek and 

Howarth 1991, Lebauer and Treseder 2008, Vitousek et al. 2010, Stevens et al. 2015). 

Other nutrients such as phosphorus and in some cases, potassium and micronutrients, can 

also limit ANPP in some ecosystems, but N limitation predominates in temperate 

ecosystems (Fay et al. 2015). Grasslands in particular are unique ecosystems as their 

productivity in a given year may be limited by nutrient availability (Fay et al. 2015) and 

also water availability (Heisler-White et al. 2008, Yang et al. 2008). Our study site, Cedar 

Point, is a relatively dry grassland and in a recent study, Wang et al. (in press) found 

productivity to be limited by precipitation in dry years and N in wet years. This 

relationship results in large annual variability of ANPP with N addition. Species 

functional traits have been found to respond to water gradients as well as nutrient 

availability (Fonseca et al. 2000, Wright et al. 2004, Cornwell and Ackerly 2009). This 

allows us to ask questions about the role of precipitation and nutrients in determining 

community structure and function.  

We used a nutrient addition experiment to investigate how community structure 

and function change with nutrient addition, and what drives these changes. We also 

examined functional trait differences across years with differences in precipitation. This 
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study was carried out within the Nutrient Network, a global collaboration of grassland 

sites which examines nutrient limitation and its influences on the diversity-productivity 

relationship and its stability over time (Borer et al. 2014b). However, few studies within 

this experiment have examined functional traits (La Pierre and Smith 2014). We 

hypothesized, (1) that N alone will cause a shift in community functional traits because of 

its known site-level importance for ANPP (Wang et. al., in press), while P and K will not 

have an effect; (2) community weighted traits will shift under N addition toward traits 

associated with faster growth rates and higher resource use (increased SLA, chlorophyll, 

height, and lower thickness, toughness, and LDMC); (3) at the species level, N addition 

will cause a shift in functional traits in the same direction as the community traits and 

will not be seen in the dominant species alone; (4) increases in community weighted 

SLA, chlorophyll, will magnify ANPP increases with N addition to larger percent 

increase in LAI and canopy chlorophyll density; and (5) an increase in precipitation will 

also cause shifts in functional traits toward traits associated with faster growth rates and 

higher resource use (increased SLA, chlorophyll, height, and lower thickness, toughness, 

and LDMC). 

 

METHODS 

Study Area 

This study was conducted from late May to early August, 2015 at Cedar Point Biological 

Station in Western Nebraska, USA (41°.12′ N, 101°.38′ W). The site is a natural short 

grass prairie located on an upland summit located south of Nebraska’s Sandhill region in 
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a moderate relief grassland east of Lake McConaughy (Chapman et al. 2001). The 

elevation of the study site is 965 m above mean sea level and annual precipitation ranges 

from 190 to 565 mm from September to August. In the study year of 2015, the summer 

was particularly wet, receiving 236 mm of precipitation. The summer months of June to 

August have a relative humidity of 59.1% with average daily temperatures ranging from 

15.4�C - 30.1�C. In the winter months of December to February, the relative humidity is 

65.0% and average daily temperatures range from -7.4�C - 5.1�C.  All climate data are 

based on 1996-2016 weather data from Cedar Point HPRCC Weather Station (HPRCC 

2017).  

Dominant species in this grassland include perennial C4 grasses such as 

Bouteloua gracilis, C3 grasses such as Hesperostipa comata and the perennial sedge 

Carex filifolia.  Perennial shrubs Artemisia frigida and Artemisia filifolia also are 

abundant species in this grassland, and in some years, annual species such as Bromus 

tectorum and Helianthus annuus may become abundant. Species identity and functional 

type were verified with the USDA PLANTS database (USDA and NRCS 1995), Farrar 

(2011) and Barnard (2014).  

 

Experimental Design 

The plots used in this study are a part of the Nutrient Network (NutNet), a global 

collaboration of grassland ecosystems with nutrient addition and herbivore exclusion 

experiments, and therefore follow the core NutNet protocol (Borer et al. 2014a). The site 

contains 60, 5x5 m plots in a three-factorial design consisting of control plots with no 
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manipulation, plots with nitrogen (N), phosphorus (P), and potassium plus micronutrients 

(K) for a total of eight nutrient treatment combinations. In addition, there are two fencing 

treatments (n = 12 plots) designed to keep out herbivores; these plots were not utilized in 

this study. Each of the 8 fertilizer treatments were replicated six times in a randomized 

block design for a total of 48 plots. The nutrient treatments have been applied annually in 

late May or early June since 2008 at 10 g m-2. N was applied as time-release urea 

[(NH2)2CO], P as triple-super phosphate [Ca(H2PO4)2], and K as potassium sulfate 

[K2SO4]. The micronutrient mix, which was only applied in 2008, included Fe (15%), S 

(14%), Mg (1.5%), Mn (2.5%), Cu (1%), Zn (1%), B (0.2%), and Mo (0.05%), applied as 

iron sulfate, calcium magnesium carbonate (dolomite), manganese sulfate, copper sulfate 

pentahydrate, zinc sulfate anhydrous, sodium borate, and sodium molybdate, 

respectively. The treatments are referred to by their primary nutrient supplements of 

nitrogen (N), phosphorus (P), and potassium (K). 

Species abundance data were collected annually in a 1x1m subplot in late June. 

Species abundances were visually estimated to the nearest 1% percent vegetation cover 

within the 1x1 m subplot using a modified Daubenmire method (Daubenmire 1959). All 

aboveground standing biomass were clipped in two 10 x 100 cm strips in each plot in late 

June. Collected biomass samples were dried at 60℃ to constant dry weight and were 

weighed to the nearest 0.01g to estimate ANPP. Light interception was estimated by 

taking two measurements at ground level from opposite corners of the 1x1 m subplot and 

one measurement above the canopy with a 1-m LI-191R Line Quantum sensor (LI-COR, 

Lincoln, NE, USA). 
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Functional traits were measured from plants in the remaining plot area in the 

summer of 2015.  In total, 51 species were sampled. Of these species, 17 were early 

season species sampled in late May and June whereas the remaining 34 were late season 

species sampled in July and early August. The functional traits measured for each species 

include: Specific leaf area (SLA), chlorophyll content, height, leaf thickness, leaf 

toughness, and leaf dry matter content (LDMC). For each species, plant standing height 

(cm) was recorded as average vegetative height for grasses and reproductive height for 

forbs for 1-10 individuals. Leaf functional traits were obtained by collecting the last, fully 

expanded leaves from several mature and undamaged individuals of that species, 

collecting enough leaf matter to have at least 0.3 g dry mass. Leaves were then taken to 

the lab and scanned using a LI3000 (LI-COR, Lincoln, NE, USA) to determine leaf area 

(cm2). Measurements were also taken for chlorophyll (mg/m2) using Chlorophyll Content 

Meter Model CCM-300 (Opti-Science, Hudson, NH, USA), leaf thickness (mm) using 

Digimatic Micrometer Series 293 MDC-MX Lite (Mitutoyo, Aurora, IL, USA), and 

toughness (g) using 516-1000M Push Pull Gauge (Chatillon, Largo, FL, USA). The 

leaves were then dried in a forced air oven at 60℃ for 3 days or until constant dry 

weight. SLA was recorded as leaf area per dry mass (cm2 g-1) and LDMC was recorded 

as dry mass per fresh mass (mg g-1). Trait values were pooled by species for each plot to 

obtain an average trait value for each species within a plot.  

To assess annual functional trait variation, we collected functional trait data in 

2016 using the same field methods. Whereas 2015 was a wet year, 2016 was much drier, 

only receiving 116 mm of precipitation. To evaluate functional trait plasticity across 
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these two years, we used a subset of 12 species which were common in both years, 

occurring in at least 3 N added and 3 non-N added plots in both years.  

 

Analyses 

In total, we measured abundance for 51 species in all 60 plots at the site (463 

observations x plot combinations). Functional trait data were not collected for every 

species observation in each plot. Of 463 occurrences of species in the 60 plots, we did not 

collect functional trait data for 207 occurrences, which accounts for an average 17.5% 

cover per plot (0.5% - 69.5%). Missing traits were substituted with the average trait 

values for the same species occurring in plots with the same fertilizer treatment 

combination or, where this was not possible due to lack of observations, missing traits 

were replaced with average values across all plots in which the species was found or from 

data collected in 2016 using the same methods. Differences between the substituted and 

raw datasets were assessed with a generalized linear model and were insignificant 

(Supplemental Table 1).  

Community weighted traits were used to make comparisons across plots with 

different species compositions. This was calculated by summing the weighted trait values 

(product of species trait and abundance) for each species in a plot and dividing by the 

total abundance of a plot to account for differences in total abundance from plot to plot. 

Changes in the resulting community weighted trait from plot to plot can be due to either 

species abundance changes (including species turnover) or intraspecific trait changes. To 

partition the effects of each of these two components, we used fixed community traits 
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following methods from Lepš et al. (2011). The fixed-community weighted trait assigns 

each species a fixed trait value, which was the mean trait value in the control plots for a 

species. Any change in the fixed-community weighted trait under fertilizer addition for 

example, can only be due to species abundance changes. Therefore, this fixed-community 

weighted trait can quantify how much of the community weighted trait change is due to 

abundance changes and intraspecific trait changes.  

Multivariate analysis of variance (MANOVA) was used to assess the effects of 

fertilization on the suite of community weighted functional traits (see methods for 

community weighted trait below). The Pillai test statistic was used to assess the 

MANOVA’s goodness of fit. Nitrogen was the only fertilizer to effect community 

weighted traits (MANOVA, F = 17.31, p < 0.001, Table 1). Therefore, all fertilizer 

treatments were combined into two groups, with N addition and without N addition. 

Linear mixed-effects models with Gaussian distribution were then used to determine 

whether N addition predicts the community weighted trait, LAI, canopy chlorophyll 

density, and ANPP. Addition of N fertilizer was included as a fixed effect (coded as 1 or 

0 for with and without N addition), and block was included as a random effect to account 

for natural variation between blocks. Models were checked for heteroscedasticity and no 

transformations were needed. Type II Wald Chi-square tests were used to assess the 

goodness of fit of each model.  

Finally, individual species responses were assessed by observing the change in 

average trait value between treatments. Species that occurred in two or fewer plots or that 

required traits to be replaced with the average (as described above) in over half of their 

observations were not included in this analysis. A generalized linear model with Gaussian 
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distribution was then used to determine if the change is best explained by unique groups 

of species. Predictor variables were percent of total abundance, flowering (early or late), 

duration (annual or perennial), and growth habit (graminoid, forb, shrub ect.) 

(Supplemental Table 2). We did not distinguish between C3 and C4 grasses or annual and 

biennial due to lack of sample size of C4 and biennial species. Predictor variables were 

also checked for correlation to avoid including highly correlated variables in the same 

model. No variables were highly correlated, though growth habit and duration were 

slightly correlated (r = 0.48). We also assessed species evenness in the fertilized and 

unfertilized plots using Pielou's evenness index. Functional trait data were also collected 

in 2016 using the same field methods. To evaluate functional trait plasticity across these 

two years, we used a subset of 12 species which were common in both years, occurring in 

at least 3 N fertilized and 3 non-N fertilized plots in both years. We used linear mixed-

effects models with Gaussian distribution to see if nitrogen addition (coded as 0 or 1), 

year (coded as 0 for 2015 and 1 for 2016), and their interaction could predict SLA, 

chlorophyll, and plant height. Species and block were included as a random effect to 

account for their natural variation. 

All statistical analyses were carried out in R version 3.3.1 (Development Core 

Team 2014) using the lmer function from the lme4 package (Bates et al. 2014), Type-II 

Anovas from the car package(Fox and Weisberg 2011), and glht function from the 

multcomp package (Hothorn et al. 2008). 

 

RESULTS 
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Community-Level Traits 

Nitrogen addition significantly influenced the community weighted traits 

(MANOVA, F = 17.3, p < 0.001), but P, K, and all other pairwise combinations did not 

have an effect (Table 1). Therefore, we combined all nutrient addition treatments into two 

groups, with and without N addition. Nitrogen addition had a significant effect on four of 

the six community weighted traits measured in this study (Figure 2). Community SLA 

increased by 19% with N addition (X2 = 6.3, p = 0.012). Nitrogen addition also caused a 

32% increase in community weighted chlorophyll and a 26% increase in community 

weighted plant height (X2 = 65.5, p < 0.001 and X2 = 23.6, p < 0.001 respectively). 

Community LDMC decreased by 11% with the addition of N (X2 = 11.5, p < 0.001). 

Community leaf thickness and leaf toughness did not respond significantly to N addition 

(X2 = 1.3, p = 0.251 and X2 = 2.8, p = 0.094 respectively).  

We found that 51% - 71% of the change in community weighted traits was due to 

intraspecific trait changes and the remaining 29 - 49% to abundance changes. Community 

level chlorophyll concentration had the largest change in intraspecific traits. When N was 

added, the community weighted chlorophyll increased by 111 mg cm-2 whereas only 31.9 

mg cm-2 (or 29%) was attributed to abundance changes. The remaining increase of 71.9 

mg cm-2 or 71% was attributed intraspecific trait changes. Of the 15.1 cm2 g-1 increase in 

community weighted SLA with the addition of N, 4.6 cm2 g-1 (30%) of the change was 

attributed to variation in species abundances and the remaining increase of 10.5 cm2 g-1 

(70%) was caused by intraspecific change in SLA. Community weighted plant height 

increased by 9.9 cm under N addition, 3.8 cm (38%) was attributed to species abundance 

changes and the remaining 6.1 cm (62%) is due to species level changes in height. 
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Finally, community weighted LDMC decreased by 50.6 mg g-1 with N addition with 24.6 

mg g-1 (49%) of this decrease was caused by abundance changes and the remaining 24.0 

mg g-1 (51%) was caused by intraspecific trait changes.  

 

Species level changes 

Neither abundances changes nor trait changes were predicted by any functional 

groups of species (p > 0.05, Figure 3). The two most dominant species Bouteloua gracilis 

and Carex filifolia declined in their abundance with N fertilization. All other species, 

with the exception of Dichanthelium oligosanthes, increased in abundance with the 

addition of N. There was an increase in plot evenness with the addition of nitrogen but 

the trend was not significant (J' = 0.75 without N, and J' = 0.73 with N, p = 0.10). Most 

species increased in SLA with the addition of N with an average increase of 6.7 cm2 g-1 

within the 15 species with sufficient sample size. Only 4 moderately abundant to rare 

species declined in SLA. Notably, most species increased substantially in chlorophyll 

concentration, except for Agropogon smithii and Helianthus annuus. The average change 

in chlorophyll with N was an increase of 74.4 mg cm-2 within the 15 species tested. Plant 

height under the addition of N also increased across species with the exception of 

Hesperostipa comata and four, predominantly rare, species. Overall, plants increased by 

an average of 6.4 cm with N fertilization. Finally, 10 of 15 species decreased in LDMC 

with an average decrease of 10.4 mg g-1 with the addition of N.  

In both 2015 and 2016, N had a significant effect on species level SLA, 

chlorophyll, plant height, and LDMC (Figure 4). The year and N addition interaction 
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significantly influenced SLA, but no other functional traits. Nitrogen addition had the 

strongest effect on SLA in 2015, a Tukey post hoc comparison did not find a difference 

between the nitrogen and non-nitrogen plots in 2016 (p = 0.16). On average, N addition 

caused an 11% increase in SLA or an increase of 9.4 cm2 g-1, a 29% increase in 

chlorophyll or 94.0 mg cm-2, a 28% increase in height or 10.3 cm, and a 7% decrease in 

LDMC or an average decrease of 27.2 mg g-1. However, from 2015 to 2016, there was an 

11% decrease in average SLA (11.1 cm2 g-1), a 26% decrease in average chlorophyll 

(108.1 mg cm-2), a 14% decrease in average plant height (5.8 cm), and an average 

increase of 8% in LDMC (29.0 mg g-1).  

 

ANPP, LAI, and canopy chlorophyll density 

 ANPP did not have a significant response to N addition (X2 = 2.133, p = 0.144, 

Figure 5). Both the LAI and canopy chlorophyll density increased significantly under the 

addition of N (X2 = 5.307, p = 0.021 and, X2 = 5.953, p < 0.001 respectively). The 

magnitude of change in LAI and canopy chlorophyll density was greater than those of 

community weighted SLA and chlorophyll. Community weighted SLA increased by 19% 

and the community weighted chlorophyll increased by 32%, whereas the LAI showed a 

34% increase and the canopy chlorophyll density nearly doubled with a 67% increase. 

 

DISCUSSION 

Nutrients at Cedar Point 
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Nitrogen addition was the only fertilizer treatment to significantly affect the suite 

of community weighted functional traits. This is consistent with the findings of Wang et 

al. (in press) which demonstrated that N was the only nutrient limiting ANPP across 

years at Cedar Point. Cedar Point contains shallow and rocky soil which are part of the 

Tassel series formed from calcareous sandstone which are high in cations and potassium 

(Scheinost et al. 1995), which may explain why K addition had no effect. Further, Cedar 

Point’s shallow soil is young and may have adequate weathering to prevent P limitation 

in soil (Scheinost et al. 1995). Thus, these sources of soil P, K, and cations may have led 

to stronger N limitation. However, other experiments within the Nutrient Network have 

found other nutrients to be important. For example, Fay et al (2015) found N to limit 

ANPP at 11 sites out of 31 which showed some nutrient limitation while P and K were 

limiting at 12 and 5 sites respectively, often this limitation occurred in the form of co-

limitation. Other studies have reported that P, K, and cations can have effects on 

individual traits or other metrics of community structure and function (Fonseca et al. 

2000, Vitousek et al. 2010, La Pierre and Smith 2014, Fay et al. 2015). Thus, how 

communities and functional traits respond to nutrient addition may vary across sites if 

different nutrients are limiting.   

 

Community weighted functional traits 

Nitrogen had significant effects on community weighted SLA, chlorophyll, 

height, and LDMC. This is consistent with other studies of the effect of nutrient addition 

on these functional traits (Tilman 1987, Knops and Reinhart 2000, Wright et al. 2004, Al 

Haj Khaled et al. 2005).  La Pierre and Smith (2014) did a similar study within the 
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Nutrient Network at a tallgrass prairie site in Kansas (USA) examining functional trait 

response to nutrient addition. They found an increase in traits like SLA and plant height 

with P addition and a decrease in LDMC with N addition, but no relative change in leaf 

thickness or toughness. According to Fay et al. (2015), productivity at this site is co-

limited by NP, which may explain some differences in functional trait response to 

nutrients between this site and our own. Other studies have found leaf thickness and 

toughness to be highest when nutrients are low and leaves are costly to replace (Choong 

et al. 1992, Cunningham et al. 1999). However, the effects of herbivory are moderate at 

our site, and the herbivore-excluding fences do not have any influence on ANPP (Wang 

et al., in press). Leaf toughness has also been found to be higher in shade tolerant species, 

again due to the costs of replacing leaves in these vulnerable habitats (Westbrook et al. 

2011). Cedar Point, with its relatively low ANPP, is unlikely to have large aboveground 

competition for light and due to low risk of leaf loss to herbivory and low shade, leaves 

may not benefit from high thickness and toughness at our study site. However, the 

strength of light competition and herbivory vary across grasslands and Borer et al. (2014) 

reported strong impacts of herbivory and light levels on ANPP in most Nutrient Network 

sites. Therefore, trait change in response to nutrient addition may vary depending on the 

degree to which herbivory, light competition, and/or water availability influence 

vegetation. Finally, Cedar Point is a dry grassland and may have naturally high leaf 

thickness and toughness relative to other sites, although there are few studies with which 

to compare. Overall, these results suggest a shift in plant strategy with increasing nutrient 

availability toward higher resource acquisition and use, and lower resource storage 

(Lavorel and Garnier 2002, Collins et al. 2016) which could have implications for 
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biogeochemical cycling and precipitation regimes (Lavorel and Garnier 2002, Reichstein 

et al. 2014). 

Many studies have documented that nutrient addition may cause change in plant 

community composition (Borer et al. 2014b, Craven et al. 2016). However, response of 

community weighted traits can be due to two factors: species abundance changes and 

intraspecific trait changes. We demonstrate that intraspecific trait changes also contribute 

substantially to the community functional response, even after eight years of nutrient 

addition. In fact, several previous studies have shown that intraspecific trait changes were 

more important than abundance changes under fertilization (Lepš et al. 2011, La Pierre 

and Smith 2014, Siefert and Ritchie 2016). However, this relationship may vary over 

time. La Pierre and Smith (2014) observed stronger changes in community composition 

in a 14-year fertilization experiment than in a nine-year experiment. Wang et al. (in press) 

also found abundance changes to be increasingly important over time at Cedar Point, 

partially due to an increase in annual species abundance over time. Further, these results 

are not limited to nutrient manipulation experiments. Jung et al. (2014) simulated an 

extreme drought event and found intraspecific variation drove the community functional 

trait response. However, Lepš et al. (2011) found species abundance changes were more 

important in some community traits in response to disturbances such a mowing. 

Therefore, the type of environmental change a community is exposed to will likely 

influence the mechanisms of community response. Together these findings demonstrate 

that both species composition and intraspecific trait changes can influence community 

weighted traits and the relative importance of each can vary over time.  
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At the species level, functional trait responses varied, but most species shifted in 

trait values toward trait values associated with higher resource use and acquisition. These 

trait changes were consistent with the community trend and were not seen in a few 

dominant species only. Abundance of the two most dominant species declined as the 

subdominant species increased in abundance. The dominant plasticity hypothesis states 

that species gain a competitive advantage when they can exhibit plasticity in their 

resource use (Ashton et al. 2010). This was observed in Bromus tectorum and Cirsium 

undulatum, which had the largest increases in abundance. Bromus tectorum also had the 

largest increase in SLA under N addition and accompanied by slight increases in 

chlorophyll and height. Of the species studied, Cirsium undulatum had the largest 

increase in chlorophyll, a moderate increase in height, and a slight decline in SLA. 

Combined, this plasticity in resource use suggests that these species gained a competitive 

edge with N addition as seen by their increase in abundance. However, there was no 

correlation between trait plasticity and abundance changes of all species overall (analysis 

not shown). Thus, it may be that only a few annual species are more plastic than the 

majority of species.   

We sampled 12 species in both 2015 and 2016 and combined these species 

showed that SLA, chlorophyll, and plant height were significantly lower in 2016 than in 

the study year of 2015. However, LDMC was significantly higher in 2016 than in 2015. 

Of these traits, SLA showed a significant year by N addition interaction, whereas the 

other traits did not. The summer of 2016 was much drier than 2015, only receiving 116 

mm of precipitation in June and July while 2015 received 236 mm. Water availability has 

been shown to affect these traits in other studies and to limit plant growth in general 
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(Fonseca et al. 2000, Chaves et al. 2002, Chapin et al. 2011). Thus, annual fluctuations in 

climate can be just as important as nutrient availability in influencing species functional 

traits. This clearly highlights that the importance of nutrient induced trait changes varies 

among years, likely influenced by precipitation differences. 

 

Scaling ANPP and community weighted traits to LAI and canopy chlorophyll density 

Studies seeking to quantify the effect of changing biotic and abiotic factors on 

ecosystem function often measure shifts in ANPP (Tilman et al. 1997, Fay et al. 2015). 

However, LAI and canopy chlorophyll density are more directly related to photosynthesis 

and carbon gain (McWilliam et al. 1993, Chaves et al. 2002, Fitzgerald et al. 2010). In 

2015, ANPP did not increase significantly and species richness was not significantly 

different with N addition, however LAI and canopy chlorophyll density increased by 

34% and 67% respectively. In addition, even with no ANPP changes, N addition 

increases light interception in the canopy by 19% (N- 62 % +/- 2% SE, N+ 74% +/- SE 

3%, n=48, Knops, unpublished data). Given this, ANPP can underestimate N induced 

changes in aboveground competition for light and ecosystem carbon gain as we saw an 

increase in light interception and chlorophyll content which are directly related to 

photosynthetic rates.   

Nutrient addition can cause a shift in allocation from root to shoot biomass as 

competition aboveground for light increases and belowground competition for nutrients 

decreases (Nadelhoffer et al. 1985). However, a shift in root shoot ratio is not likely at 

our site for several reasons. First, we did not find a significant increase in aboveground 
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biomass, and Wang et al. (in press) only showed increased aboveground biomass in wet 

years. ANPP at our site is primarily precipitation limited (Wang et al., in press), and 

therefore a shift in root to shoot ratio as seen in sites that are primarily nutrient limited 

may not occur. Second, the increased aboveground biomass is largely driven by increased 

annual species abundances at our site (Wang et al., in press), and annual species typically 

have lower root to shoot ratio. However, we did not find differences an increase in annual 

species abundances in 2015. Finally, the observed shift in functional traits with N 

addition are associated with faster growth rates and higher maintenance costs which 

require increased cellular respiration (Penning De Vries 1975). Therefore, carbon may 

have been lost to respiration rather than assimilated into ANPP. We have no direct 

estimate of belowground root biomass however, which is difficult to measure at our site 

due to the shallow and rocky soil.  

Precipitation in June and July of 2015 was 236 mm which was the highest of the 

last 10 years. However, ANPP did not increase significantly with N addition in 2015. 

Wang et al. (in press) found that ANPP at Cedar Point was primarily limited by 

precipitation, but in years when precipitation was not limiting, N was limiting. Therefore, 

with the high precipitation in 2015 a larger increase in ANPP with N addition was 

expected. Wang et al. (in press) also found that annual species productivity drove the 

responses to N fertilizer in wet years. However, here we found that annual species did not 

differ significantly from the perennial species in their abundance change, or trait change, 

with N addition. Although total precipitation is an important factor determining ANPP 

variation, the timing of precipitation events is also important as it may serve as a crucial 

germination cue for annual plant species (Philippi 1993). Therefore, because community 
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weighted functional traits are calculated using species abundances and species traits, and 

because annual species exhibit large annual variability in abundance, the community 

weighted traits will also vary strongly over time.   

We found that both N addition and annual precipitation to be important in 

determining relative species abundance and species functional traits. Canopy parameters 

such as LAI and canopy chlorophyll content are the product of ANPP, relative species 

abundances, and species functional traits. Therefore, ecosystem level changes in canopy 

structure can be strongly influenced by species abundance changes and species functional 

trait changes, even when ANPP does not change. We also found large annual variation in 

species functional traits, likely induced by precipitation differences. Further, this annual 

variation can be just as important as nutrient addition in determining functional traits. 

Therefore, annual trait variability combined with annual variability in ANPP and species 

composition can lead to even larger variation in LAI and canopy chlorophyll content. To 

understand the ecosystem consequences of N addition, we need to examine not only 

ANPP, but also annual differences in species composition and functional traits, as they 

are crucial in determining canopy structure 
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Table 1. Results of a MANOVA with community weighted traits (SLA, chlorophyll, 
thickness, toughness, height, LDMC) as the response variable and the fertilizer treatments 
N, P, K, their interactions, and block as predictor variables. Community weighted traits 
were calculated summing the product of individual species trait values and species 
abundance in a plot and dividing by the total abundance of a plot. Here we use the Pillai 
test statistic to determine goodness of fit of each model. Significant p-values are denoted 
with asterisks (*** = P < 0.001). 

  
df Pillai F Numerator 

df 
Denominator 
df 

P   

N 1 0.713 14.069 6 34 <0.001 *** 
P 1 0.167 1.134 6 34 0.364 

 

K 1 0.115 0.733 6 34 0.627 
 

Block 1 0.161 1.087 6 34 0.390 
 

N:P 1 0.121 0.777 6 34 0.594 
 

N:K 1 0.123 0.793 6 34 0.582 
 

P:K 1 0.186 1.293 6 34 0.287 
 

NPK 1 0.216 1.564 6 34 0.188   
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Figure 1. Conceptual diagram describing how environmental change scales up to effect 
ecosystem function. Environmental change simultaneously effects species functional trait 
values as well as species abundances. Certain functional trait values can give species 
competitive advantages and cause shifts in species abundances, or species abundance 
changes can cause increased competition and therefore effect functional traits. Which 
species are most abundant and which functional trait values they possess both influence 
community structure and function.  Community structure and function then impacts 
ecosystem functions like productivity, water, nutrient, and energy cycling.  
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Figure 2. Mean community weighted SLA, chlorophyll, plant height, and LDMC in the 
plots with no nitrogen added (N-) and the nitrogen added (N+) plots. Community 
weighted traits were calculated summing the product of individual species traits and 
species abundance in a plot and dividing by the total abundance of a plot. Significant p-
values are denoted with asterisks (*** = P < 0.001, * = P < 0.05), and the error bars 
represent the standard error of the mean of each treatment. 
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Figure 3. Change in species average a) abundance, b) SLA, c) chlorophyll, d) plant height, 
and e) LDMC in the plots without nitrogen added and plots with nitrogen fertilization. 
Species are arranged by site level dominance with dominant on the left to rare on the right. 
The error bars represent the standard error of the difference between the nitrogen plots and 
the mean of the non-nitrogen plots. 
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Figure 4. Change in mean a) SLA, b) Chlorophyll, c) Height, d) LDMC between the plots 
with no nitrogen added (N-) and the nitrogen fertilized (N+) plots in 2015 and 2016. The 
two study years had markedly different precipitation (236 mm in 2015 and 116mm in 
2016). We used linear mixed effects models with functional traits (SLA, chlorophyll, 
height, and LDMC) as the response variable and the fertilizer treatments N, Year, and 
their interaction as predictor variables. We use type II ANOVA to determine goodness of 
fit of each model. Significant p-values are denoted with asterisks (*** = P < 0.001, ** = P 
< 0.01, * = P < 0.05). The error bars represent the standard error of the mean of each 
treatment. 
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Figure 5. Mean ANPP, leaf area index, and canopy chlorophyll density in the plots with 
no nitrogen added (N-) and the nitrogen added (N+) plots. LAI, or the total leaf surface 
area per square meter, is the product of community weighted SLA and ANPP. Canopy 
chlorophyll density, or total number of chlorophyll molecules per square meter, is the 
product of community weighted chlorophyll and LAI. Significant p-values are denoted 
with asterisks (*** = P < 0.001, * = P < 0.05) and the error bars represent the standard 
error of the mean of each treatment. 
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APPENDIX  

Table S1. Number of observations missing functional trait data at each point in the data 
averaging process. The change from previous dataset is change in community weighted 
Specific Leaf Area. Differences between the raw data and the averaged dataset were 
assessed with a generalized linear model and were found to be insignificant (p = 0.443). 
Other traits were also tested and did not differ significantly between the initial and final 
dataset (p > 0.1).  

Dataset 

Abundance 
Records 

with Traits 

Abundance 
Records 
Missing 
Traits 

Average 
Percent 
Cover 

Missing Treatment 
SLA  

Estimate 
Raw data 256 207 17.5  Absent Present 

   N 72.48 90.66 

   P 82.77 80.37 

   K 72.92 90.22 
Averaged 

Within 
Treatment 

Combination 

379 84 3.4    

   N 78.78 94.20 

   P 87.17 85.81 

   K 80.89 92.09 
Averaged 

Across Plots 
433 30 1.9    

   N 78.96 93.40 

   P 86.56 85.80 

   K 80.26 92.10 
Filled with 
2016 Data 

457 6 0.1    

   N 79.12 93.66 

   P 86.64 86.14 

   K 80.32 92.46 
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Table S2. Species list and corresponding functional groups. Percent of site-level 
abundance is the total abundance across all plots. Flowering period, duration, and growth 
habit information come from the USDA PLANTS database, Barnard 2014, and Farrar 
2011. 

Species 

Percent of 
Site-Level 
Abundance 

Flowering 
Period Duration 

Growth 
Habit 

Bouteloua gracilis 19.21 Late Perennial Graminoid 
Carex filifolia 18.41 Early Perennial Graminoid 
Hesperostipa comata 16.84 Early Perennial Graminoid 
Bromus tectorum 12.30 Early Annual Graminoid 
Artemisia frigida 8.08 Late Perennial Shrub 
Artemisia filifolia 4.65 Late Perennial Shrub 
Helianthus annuus 2.82 Late Annual Forb 
Pascopyrum smithii 2.68 Late Perennial Graminoid 
Calamovilfa longifolia 1.51 Late Perennial Graminoid 
Sphaeralcea coccinea 1.22 Late Biennial Forb 
Dichanthelium oligosanthes 1.16 Late Annual Graminoid 
Conyza canadensis 1.10 Late Annual Forb 
Sporobolus cryptandrus 1.10 Late Perennial Graminoid 
Cirsium undulatum 0.97 Late Perennial Forb 
Chenopodium album 0.88 Late Annual Forb 
Buchloe dactyloides 0.76 Late Perennial Graminoid 
Gaura coccinea 0.62 Early Perennial Forb 
Lithospermum incisum 0.52 Early Perennial Forb 
Psoralea tenuiflora 0.44 Late Perennial Forb 
Heterotheca villosa 0.41 Late Perennial Forb 
Physalis heterophylla 0.39 Late Perennial Forb 
Verbena stricta 0.34 Late Perennial Forb 
Lepidium densiflorum 0.33 Early Biennial Forb 
Linum rigidum 0.30 Early Perennial Forb 
Bouteloua curtipendula 0.26 Late Perennial Graminoid 
Ambrosia artemisiifolia 0.24 Late Annual Forb 
Physalis longifolia 0.22 Late Perennial Forb 
Monarda pectinata 0.20 Early Annual Forb 
Ratibida columnifera 0.16 Late Perennial Forb 
Euphorbia glyptosperma 0.16 Late Annual Forb 
Mirabilis linearis 0.15 Late Perennial Forb 
Plantago patagonica 0.13 Early Annual Forb 
Coreopsis tinctoria 0.12 Late Biennial Forb 
Bouteloua hirsuta 0.10 Late Perennial Graminoid 
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Hordeum jubatum 0.10 Early Perennial Graminoid 
Polygala alba 0.10 Early Perennial Forb 
Asclepias pumila  0.06 Late Perennial Forb 
Tradescantia occidentalis 0.06 Early Perennial Forb 
Lygodesmia juncea 0.04 Late Perennial Forb 
Liatris punctata 0.03 Late Perennial Forb 
Vulpia octoflora 0.03 Early Annual Graminoid 
Chenopodium leptophyllum 0.02 Late Annual Forb 
Oenothera albicaulis 0.02 Early Annual Forb 
Physalis pumila 0.02 Late Perennial Forb 
Tragopogon dubius 0.01 Late Biennial Forb 
Lappula redowskii 0.01 Early Biennial Forb 
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