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  Abstract  
 
  Antigen presenting cells (APCs) perform the essential task of integrating responses 
between the innate and adaptive immune system. Several approaches have been 
undertaken to manipulate the effects of APCs for therapeutic purposes. Panax 
notoginseng is a medicinal herb that is purported to possess a number of properties 
including modulation of the immune system. However, limited information exists on the 
effects and toxicities of this herbal on APCs. In this regard, we assessed the effects of 
Panax notoginseng on the fate and function of professional APCs in murine models using 
macrophages and dendritic cells (DCs). APCs were stimulated with the toll-like receptor 
ligands LPS, CpG and poly(I:C) and treated with notoginseng (0-200 µg/ml). The LPS 
induced levels of the proinflammatory cytokine TNF-α, as well as the expression of 
accessory molecules MHC II, CD40 and CD86, were decreased dependent on 
notoginseng exposure time-points relative to LPS stimulation. LPS induced IL-1β, IL-6 
and IL-12 production was also decreased with concurrent notoginseng treatment for 24 
hours.  Notoginseng decreased TNF-α and CD40 activation by CpG and poly(I:C), but 
had varied effects on the induction of IL-6 and CD86. Furthermore, treatment of APCs 
with ginsenosides Rb1 and Rg1 had differential effects on the production of TNF-α and 
IL-6. Phagocytosis of FITC-conjugated ovalbumin antigen by DCs was decreased by 
notoginseng. Furthermore, the uptake of FITC-conjugated modified LDL was reduced in 
notoginseng treated DCs. However, T cell proliferation in response to notoginseng-
treated-antigen-loaded DCs was not affected in vitro or in vivo. Mechanistically, 
notoginseng reduced nuclear levels of the transcription factor NFκB, but had no effect on 
glucocorticoid receptor activation. No immunotoxicities were observed with low dose 
notoginseng (660 µg/kg) treatment of Balb/c mice in vivo. Collectively, our results 
indicate that notoginseng decreased inflammatory mediator production by APCs, without 
altering their ability to induce antigen specific CD 4+ T cell proliferation. Our research 
provides insight into the potential use of this herbal in the treatment of inflammatory 
diseases as a safe and effective complement to existing remedies. 
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CHAPTER 1 

Introduction 

     This study describes the effects of the medicinal herb Panax notoginseng 

(notoginseng) on the fate and function of professional antigen presenting cells (APCs). 

This introductory chapter will (1) outline the organization and function of the immune 

system with primary focus on APCs, Toll-like receptors (TLRs) and inflammation, (2) 

provide detailed information about the general properties and uses of plants in the 

Ginseng species, and (3) elucidate modes by which notoginseng modulates immune 

function. 

 

Overview of the Immune System 

    The immune system is designed to eliminate any object that is characterized as being 

foreign or a danger to the body (Goldsby et al., 2003). This includes protection from 

invading microorganisms such as bacteria, viruses and fungi, as well as eliminating cells 

with altered proteins or other molecules that are no longer recognized as “self”. 

Surveillance of an individual involves a complex process, with various hierarchies and 

checkpoints existing to facilitate immune efficiency. These hierarchies begin with the 

immune system being divided into two sections, innate and adaptive immunity (Parkin 

and Cohen, 2001). These sections are not mutually exclusive, but work in conjunction 

with each other to effectively eliminate threats to the body. The innate arm of immunity 

recognizes non-specific threats and reacts immediately to danger patterns and signals. 

Alternatively, the adaptive arm is the precision arm and recognizes specific molecules 

that are capable of binding to adaptive immune cell receptors. These molecules are 
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known as antigens. However, as specificity takes time, there is a lag between the 

immediate, but non-specific, innate response and the precise, but slower, adaptive 

immune response.  

Innate immunity 

     Innate immunity is composed of four types of defensive barriers: anatomic, 

physiologic, phagocytic and inflammatory (Goldsby et al., 2003). The anatomic barrier 

encompasses the skin and mucous membranes. This barrier is the first line of defense and 

prevents the entry of microorganisms into our body.  Physiological barriers include the 

body’s ability to control temperature, pH and chemical mediators whose primary function 

is to target pathogens and create an environment that is not conducive to their growth. 

The third line of innate defense mechanism is the ingestion (phagocytosis) and 

destruction of pathogens by phagocytes. Specialized immune cells such as monocytes, 

macrophages, neutrophils and dendritic cells conduct phagocytosis. There are also 

immune cells whose primary function is to present pieces of phagocytosed pathogens, 

known as antigens, to adaptive immune cells. These cells are known as antigen 

presenting cells (APCs) and will be discussed further in detail later in this chapter. The 

fourth defensive strategy used by our innate cells is the production of an inflammatory 

environment. This environment is created when leukocytes and inflammatory molecules 

converge on sites of infection or tissue injury. While this process is advantageous to 

clearing insults to tissue injuries, persistence of an inflammatory response can lead to 

chronic inflammatory diseases. The implications of inflammation and an overactive 

immune response will also be discussed below. 
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Antigen presenting cells (APCs) 

     APCs are specialized immune cells that express major histocompatibility complex 

(MHC) II molecules on their cell surface and can process and present foreign substances 

known as antigens, which binds to these molecules to elicit adaptive immunity (Goldsby 

et al., 2003). These MHC II molecules are important because T cells recognize antigens 

only when bound to a MHC complex. This presentation of antigens by APCs to T cells is 

widely referred to in immunology as “signal 1”. The “second signal” involves APCs 

delivering co-stimulatory signals to T cells that are essential for their full activation. 

These two processes are known in immunology as the two-signal hypothesis (Fig. 1-1). 

In addition to these signals, activated APCs also release a third signal known as 

cytokines. Cytokines are small protein molecules that mediate numerous physiological 

responses including the development of specific T cell responses, modulation of 

inflammation, regulation of hematopoiesis and control of cell proliferation and 

differentiation (Goldsby et al., 2003). The activation process begins when an APC 

encounters antigen in the periphery. Uptake of antigens can trigger the migration of 

certain APC types to a secondary lymphoid organ. There, antigen-bearing APCs select 

antigen-specific lymphocytes from a pool of recirculating T cells. Under the right 

conditions, interaction of this APC with T cells initiates an adaptive immune response.  

     The three major types of APCs in order of importance are dendritic cells (DCs), 

macrophages and B cells. DCs are known as the primary professional APCs of the 

immune system (Trombetta and Mellman, 2005). These cells are unique for a number of 

reasons the main one being that DCs are the most potent APCs capable of inducing the T 

cell-mediated immunity, thus permitting the establishment of immunological memory 
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(Banchereau et al., 2000c; Foged et al., 2002; Gilboa and Vieweg, 2004). DCs 

constitutively express high levels of MHC molecules, as well as high levels of the 

costimulatory molecules CD80 and CD86 that are needed to initiate the T cell response. 

As a result, DCs are potent activators of naïve, memory and effector T cells. Under 

different microenvironments DCs are able to induce contrasting states of immunity or 

tolerance.  

     DCs mainly reside in peripheral tissues. Upon encountering a danger signal, these 

cells mature into potent APCs and migrate to draining lymph node organs where they can 

interact with T cells (Kooten  van and Woltman, 2004). The maturation process results in 

decreased capacity to capture antigen, but increased expression of the activation 

molecules CD40, CD86 and MHC II (Kooten  van and Woltman, 2004). These changes 

in DC morphology are important for increasing their interactions with corresponding 

receptors on the surface of T cells to facilitate activation of the adaptive immune system. 

     The major types of DC subsets are lymphoid and myeloid, in addition, interstitial and 

Langerhans DC subsets maybe also be present dependent on animal type (Banchereau et 

al., 2000c). In previous years, there have been numerous studies on a new type of DC 

being present in both species, now known as plasmacytoid DCs (Colonna et al., 2004; 

Zhang and Wang, 2005). All DC subsets differ in phenotype, localization and function. 

The traditional DC subsets express appreciable levels of the classic cell surface molecules 

MHCII and CD11c by which they can be identified by using tagged antibodies against 

these proteins. However, plasmacytoid DCs do not express CD11c in humans and express 

it at very low levels in mice (Colonna et al., 2004).  
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     DCs can be differentiated and expanded from progenitor cells by using the growth 

factors FMS-like tyrosine kinase 3 ligand (Flt3-L) and granulocyte macrophage-colony 

stimulating factor (GM-CSF) (Banchereau et al., 2000c). Flt3-L targets primitive 

hematopoetic bone marrow progenitors, inducing their expansion and differentiation with 

all DC subsets increasing dramatically. In contrast, GM-CSF preferentially expands 

myeloid DC subsets. Unlike DCs, macrophages do not express MHC II and costimulatory 

molecules constitutively, but induces them after their activation by phagocytosis of 

microbes such as bacteria or viruses. This means that while DCs are the most important 

cells in naïve T cell and B cell activation, unstimulated macrophages do not activate these 

cells as efficiently. In addition to antigen presentation, macrophages influence a range of 

immune responses by antigen recognition, capture, clearance and transport (Gordon, 

1998). The function and activity of macrophages is strongly influenced by their 

microenvironment (Gordon, 1998; Laskin et al., 2001). The liver and lung have the 

largest populations of macrophages in the body (Laskin et al., 2001). As a result of the 

unique attributes of these tissues, hepatic and pulmonary macrophages play essential 

roles not only in nonspecific host defense mechanisms, but also in the homeostatic 

responses of these tissues (Laskin et al., 2001). 

     The third type of professional APCs is the B cell. Among the APCs B cells are least 

likely to uptake and present antigens. In fact, they are better known for their adaptive 

immune functions as opposed to their APC capability. As such, their functions will be 

discussed in the section on adaptive immunity later in this chapter.  
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Figure 1-1.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 
Figure 1-1. The two signal hypothesis of T cell activation.  APCs activate helper T 
cells by the binding of the MHC II/antigen complex to the T cell receptor. This process is 
known as signal 1. Signal 2 involves the binding of costimulatory molecules on the APC 
such as CD86 with CD28 on the helper T cell. Other signals such as cytokine production 
by the APC also aid in the activation process. This figure was adapted from Seely et al. 
2003, Anatomy and Physiology, Mc-Graw Hill Companies, pg 805. 
 

    APC 

CD86 

    APC 
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 Toll-like receptors (TLRs) 

Certain types of molecules are unique to microbes and are never found in multicellular 

organisms. Innate immune cells have evolved to recognize these pathogen associated 

molecular patterns (PAMPS) using pattern recognition receptors (PRRs) (Doyle and 

O'Neill, 2006). PAMPS are highly conserved within microbial species, but are generally 

absent from human cells. Of these classes of receptors, the TLRs are among the most 

important. The TLR family of proteins is an ancient one, recognizing generations of 

defensive responses to pathogens in organisms as widely separated in evolution as 

humans and flies. Over ten different types of TLRs have been recognized, each being 

activated by a wide array of PAMPs (Fig.1-2). These TLRs are characterized by the 

presence of an extracellular leucine-rich repeat domain (LRR) and an intracellular 

Toll/IL-1 receptor (TIR) domain (Carpenter and O'Neill L, 2007).  In mammals, many 

TLR receptors are found on the cell membranes of innate immune cells such as 

macrophages and DCs. However, TLR3, 7, 8 and 9 are expressed in intracellular 

compartments, principally in the endosomes and the endoplasmic reticulum (Carpenter 

and O'Neill L, 2007; Kanzler et al., 2007). TLRs are either constitutively expressed or 

induced in different cell types, which determines their capacity for microbial detection 

(Napolitani et al., 2005). TLRs are differentially coupled to a number of cell signaling 

pathways. However, with the exception of TLR3, all TLRs are coupled to the myeloid 

differentiation primary-response protein 88 (MyD88) adaptor; TLR3 and TLR4 are also 

coupled to TIR-related adaptor protein inducing interferon (TRIF) (Kanzler et al., 2007; 

Napolitani et al., 2005). Signaling through TLRs leads to the activation of transcription  
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Figure 1-2.   

 

 

 
 
 
 
 
 
 
 
Figure 1-2.  The initiation of the immune responses by TLRs activated by microbial 
ligands. TLR signaling is initiated by distinct PAMPS. This activation ultimately leads to 
inducing downstream transcription factors responsible for initiating a variety of immune 
mediators. This figure was obtained from (Carpenter and O'Neill L, 2007). 
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molecules including nuclear factor kappa B (NFκB) and interferon response factor 3 

(IRF-3) which in turn culminates in activation and synthesis of a range of pro-

inflammatory mediators including cytokines, co-stimulatory molecules and inflammatory 

enzymes (Doyle and O'Neill, 2006). Recent studies on TLRs also include enhanced roles 

that these receptors play in immune cell physiology such as enhanced antigen capture via 

induction of actin remodeling of the cytoskeleton of DCs (West et al., 2004). As a result 

of these unique immunomodulatory properties of TLRs, new trends in medicine have 

sparked interest in the development of TLR agonists in the treatment of cancer, viral 

infections and as an adjuvant in potent new vaccines (Kanzler et al., 2007; Wickelgren, 

2006). In addition, as recognition of inappropriate TLR responses in autoimmunity and 

inflammation grows, efforts have begun to develop antagonists to Toll-like receptors as a 

treatment for immune related diseases (Kanzler et al., 2007; Marshak-Rothstein and 

Rifkin, 2007). 

 

Inflammation  

      Tissue damage from an injury or by an invading microorganism induces a complex 

sequence of events collectively known as the inflammatory response. The response is 

simply characterized as involving redness, swelling, heat and pain, which are classic 

symptoms from the three major events in inflammation. These events are vasodilation, 

increased capillary permeability and influx of phagocytes from the capillaries into the 

damaged tissue to attack pathogens. Inflammation allows immune cells to quickly and 

efficiently travel to sites of infection, where they can target and eradicate pathogens. 
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   While the immune system is important for protecting us against pathogens and 

opportunistic organisms, there are some incidences where it is not kept in check. This 

condition is known as autoimmunity and primarily involves a hyperactive immune 

response to the body’s own antigens. Autoimmunity is primarily characterized by chronic 

symptoms of inflammation which causes discomfort and leads to many different disease 

conditions such as rheumatoid arthritis, diabetes mellitus type 1 and lupus erythematosus. 

In addition to autoimmune diseases there are other conditions such as atherosclerosis, 

with components of inflammation being primarily responsible for exacerbation of the 

diseases (Vanderlaan and Reardon, 2005). In atherosclerosis, both the innate and adaptive 

immune system participate in the exacerbation of the disease. Macrophages and vascular 

smooth muscle cells are involved in retaining and modifying lipids in the vessel walls, as 

well as driving the chronic vascular inflammation that characterizes this disease 

(Vanderlaan and Reardon, 2005).  

     There are many natural and synthetic agents that are currently used in the treatment of 

inflammatory diseases. In spite of this, there is still a constant search for better agents to 

treat inflammation. Presently, anti-inflammatory agents target many aspects of the 

immune system including cytokines, inflammatory enzymes and transcription factors 

responsible for inducing or decreasing the production of these inflammatory mediators. 

The most widely used are the non-steroidal anti-inflammatory agents (NSAIDs) and 

steroidal anti-inflammatory agents, primarily the glucocorticoid receptor (GCR) agonists. 

These agents can also target activation of the transcription factor, NFκB. 
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Nuclear Factor Kappa B (NFκB) 

    NFκB is a family of transcription factors involved in stress-induced, immune and 

inflammatory responses (Dixit and Mak, 2002). These molecules also play important 

roles in the development of hematopoietic cells and lymphoid organs (Dixit and Mak, 

2002).    NFκB is described as being one of the most studied transcription factors in 

biology (Dixit and Mak, 2002).  

     Members of the NFκB family are formed by a dimeric combination of subunits and 

are activated by a number of receptor-mediated signaling pathways (Dixit and Mak, 

2002). There are five members of this family of transcription factors, Rel (c-Rel), Rel A 

(p65), Rel B, NFκB1 (p105/p50) and NFκB2 (p100/p52). These proteins work together 

to regulate the expression of genes that encode cytokines, chemokines and adhesion 

molecules thereby coordinating adaptive and immune responses. NFκB/Rel dimers 

interact with a group of inhibitory proteins called the IκB family. These proteins anchor 

NFκB complexes in the cytoplasm in its inactive form (Karin and Ben-Neriah, 2000b). 

The degradation of an IκB complex initiated by an inflammatory stimulus leads to the 

translocation of NFκB into the nucleus.  Inside the nucleus, NFκB complex can bind to 

DNA to induce the transcription of immune and inflammatory genes. 

     Recently, there have been a number of studies on agents that target the activation of 

NFκB (Tanaka et al., 2007). From a biomedical standpoint, controlling the activity of this 

transcription factor is a prime target for modulating a wide array of immune and 

inflammatory genes in numerous diseases (Celec, 2004b).  
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Adaptive immunity 

     As mentioned before, innate immune cells also deliver messages to adaptive immune 

cells so they can aid in the fight against pathogens. These adaptive immune cells are 

capable of selective recognition and elimination of pathogens. Lymphocytes exclusively 

display characteristics of antigen specificity, diversity, immunologic memory and 

self/nonself recognition. They distinguish subtle differences among antigens, recognize a 

tremendous number of unique structures, remember a pathogen for a faster response time 

upon a secondary encounter and can tell the difference between self and foreign 

molecules.  Adaptive immunity is mediated by two types of cells, T lymphocytes and B 

lymphocytes (Fig 1-3).  

 

B cells 

B cells are the antibody producing cells of the immune system (Parkin and Cohen, 2001). 

Antibodies are glycoprotein molecules with tremendous specificity for antigens. These 

glycoprotein molecules are the mediators of humoral immunity. Mature B cells leave the 

bone marrow expressing membrane-bound immunoglobulin antibody (Fagarasan and 

Honjo, 2000). These naïve B cells circulate in the blood and lymph and are eventually 

carried to the spleen and lymph nodes where they reside. When an antigen specific to its 

membrane-bound antibody activates a B cell, it can proliferate and differentiate into 

antibody secreting cells known as plasma cells or form long-lived memory B cells. 

During this stage, affinity maturation and class switching occurs. Affinity maturation 

increases the average affinity of the antibody for a specific antigen while class switching 

involves a change in the "effector" isotype of the antibody that the B cell produces.  
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     Figure 1-3.  

 

 

  

 

 

 

 

 

 

 

Figure 1-3. The role of T and B lymphocytes in immunity. An outline of B and T cells 
from development to activation, and their effector responses. This figure was obtained 
from (Parkin and Cohen, 2001). 
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Depending on the nature of the antigen, B cell activation can occur via two different 

routes, namely T cell-dependent and T cell-independent responses. The T cell-dependent 

response requires direct contact with T helper (Th) cells. This process entails antigens 

binding directly to the B cell surface immunoglobulin (Ig), along with costimulation by 

antigen-specific T cells through CD40-CD40 ligand interaction and the secretion of 

cytokines (Fagarasan and Honjo, 2000). This is followed by appropriately activated B 

cells proliferation and differentiation into plasma cells and memory cells. T cell-

dependent immune responses usually involve conventional (B2) B cells. However, 

another subset of B cells, B1 cells, along with marginal zone B cells are primarily 

responsible for producing antibodies in a T-independent manner (Fagarasan and Honjo, 

2000). These cells recognize common bacterial antigens such as LPS as well as self-

antigens, such as phosphatidylcholine, DNA and membrane proteins on erythrocytes and 

thymocytes. In T cell-independent response by B1 cells, these antigens can activate B 

cells in the absence of direct participation with T cells.   Instead, B cell receptors are 

effectively cross-linked by antigens with repetitive epitopes, to produce large amounts of 

antibodies. These antibodies are usually of lower affinity than those produced by T cell-

dependent responses. 

     In addition to their primary function as the B cell receptors, antibodies contribute to 

targeting proteins on pathogens for elimination by a number of methods. This includes 

neutralizing pathogens and opsonization of antigens to enhance clearance of microbes 

from the body. The primary properties of antibodies have also led to their use in a variety 

of biological industries including research labs and even in the synthesis of many 

pharmaceutical agents. 
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     As previously mentioned, B cells are also considered as professional APCs. However, 

of the three professional APCs, B cells are the ones least likely to uptake and present 

antigens. This results from a number of factors including the low frequency of naïve B 

cells that bear a receptor for a particular antigen, their absence from skin and mucosal 

sites through which most pathogens and environmental antigens enter the body, and their 

dependence on help from activated CD4 T cells (Rodriguez-Pinto, 2005). In addition to 

these factors, even though resting B cells express MHC II molecules, the co-stimulatory 

molecule CD86 still has to be induced before they can adequately activate T cells. 

However, upon antigen specific activation, B cells become very good APCs, expressing 

the necessary accessory/costimulatory molecules and can stimulate naïve, memory as 

well as effector T cells.  

T cells 

    Unlike B cells, T cells can only recognize antigen that is bound to MHC molecules on 

an APCs. MHC molecules are not important to T cells in antigen recognition only, but 

also play a major role in T cell development in the thymus.  Antigenic diversity of the T 

cell population is limited during maturation by a selection process that only allows MHC-

restricted and non-self reactive T cells to mature. The final maturation stages in the 

development of most T cells proceed along two different pathways, generating 

functionally distinct subpopulations of CD4+ and CD8+ T cells. These populations 

recognize different MHC complexes, with CD4+ cells and CD8+ cells being MHC II- and 

MHC I- restricted, respectively. 

     Activation of mature T cells begins with the recognition of a specific antigen in the 

context of MHC molecule on an APC, a process known as signal 1 as described in the 



 16 

previous section on APCs. In order to be fully activated, there must also be a second 

signal involving the interaction of various accessory molecules on the T cell with their 

corresponding molecules on the APCs. Following these two signals are a number of 

pathway activations leading to the transcription of effector molecules including the 

cytokine IL-2, which was originally described as the T cell growth factor (Vincenti and 

Luggen, 2007). IL-2 production is sometimes referred to as signal 3 as it induces the 

proliferation of T cells into various effector as well as memory T cells when combined 

with antigen/MHC molecules and costimulation (Vincenti and Luggen, 2007).  

     While the activation and differentiation of both CD4+ (T helper-Th) and CD8+ (T 

cytotoxic-Tc) cells are vastly similar, there are dramatic differences in the effector 

functions of these subsets.  Th cells are usually the first T cells activated in an immune 

response. These cells orchestrate adaptive immune responses by either primarily 

activating B cells for a humoral response or Tc for a cell mediated response. Differences 

in the pattern of cytokines secreted by activated Th results in these different types of 

immune responses. 

      As such, Th cells can be classified into two subpopulations distinguished by these 

different panels of cytokines which they secrete (Dong and Flavell, 2001). These 

populations are referred to as the Th 1 and Th 2 subsets. The Th 1 subset secretes the 

cytokines IL-2, IFN-γ, TNF-α and mediates cellular immunity. These events are initiated 

by the transcription factor T-Bet which is primarily induced by the presence of high 

levels of IL-12 and IL-18 produced by APCs (Gutcher and Becher, 2007). In contrast, Th 

2 subsets secrete IL-4, IL-5, IL-10 and IL-13 and regulate humoral immune responses. Th 

2 subsets are promoted by GATA-3 transcription factor activation by IL-4 secretion by 



 17 

naïve CD4+ T cells. Of additional importance is that cytokines, secreted by a particular Th 

subset, are able to further promote the expansion of that subset population while 

inhibiting the development of the other Th population (Gutcher and Becher, 2007). 

     Effector T cell responses need to be controlled after completing its mission of 

eradicating pathogens, in order to prevent it from inducing autoimmune conditions 

(Beissert et al., 2006). The T regulatory (T regs) cell subtype, are the primary cells 

responsible for managing this process. These cells were first described in the early 1970s 

as suppressor T cells (Beissert et al., 2006). However, their existence was questioned and 

the presence of these cells in the immune system was dismissed (Wickelgren, 2004). 

Their presence was revived in the 1990s with an abundance of research in the field 

leaving no doubt as to their existence. Since then, there has been continued research on 

defining lineage specific markers for these cells, with the front-runners being 

CD4+/CD25+ and Fox P3+ T cells. T regs can suppress T cell responses by tolerizing T 

cells in certain conditions. It is believed that the control of T cell responses by T regs will 

provide clues in the management of numerous immune disorders (Wickelgren, 2004).  

 

Ginseng 

 In 1994 the United States Congress passed the Dietary Supplement Health and Education 

Act to promote consumer access to dietary supplements (Engel and Straus, 2002). This 

law defined a new category of food — “dietary supplement” — which would include 

herbs and other botanicals, vitamins and minerals, and other substances (Engel and 

Straus, 2002). Since the passage of this act, the dietary supplement industry has 

experienced considerable growth (Noonan and Patrick Noonan, 2006).  However, the 
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marketing of these products as food also opened the door for their sales without 

standardized test to prove whether they are safe, efficacious or produced under current 

good manufacturing processes (CGMP). As a result, on June 25, 2007, the Food and 

Drug Administration (FDA) issued guidelines which ensures that dietary supplements are 

produced in a quality manner, do not contain contaminants or impurities and are 

accurately labeled. While these rules will enable the application of CGMP that provides 

some measure of protection for the public, it does not adequately address whether these 

products are biologically safe or effective. 

     Currently, ginseng is one of the most popular dietary supplements, with an annual sale 

of over USD 200 million (Yue et al., 2007). Ginseng is a deciduous perennial plant that 

belongs to the Araliaceae family. Presently, twelve species of Ginseng have been 

identified. Among them, Panax ginseng C. A. Meyer, P. quinquefolium L and P. 

notoginseng are the three most well known and scientifically investigated species. 

Ginseng is purported to have numerous pharmacological and therapeutic properties. It 

affects the central nervous system (CNS), cardiovascular system, endocrine secretion, 

immune function, metabolism, and has anti-stress and anti-aging actions. These 

properties have been primarily attributed to the ginsenoside components of Ginseng. 

However, studies also suggest that phytosterols, peptides, polysaccharides, fatty acids, 

polyacetylenes, vitamins and mineral components also contribute to Ginseng’s, biological 

effects (Buettner et al., 2006).  

     Ginseng has been used clinically in China, Korea and Japan for thousands of years 

(Radad et al., 2006; Yue et al., 2007). In the 18th century, the West recognized the 

medicinal advantages of Ginseng. This subsequently led to a large number of  
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Figure 1-4.  

 

 

 

 

 

 
Figure 1-4. The chemical structure of ginsenosides. glc = glucosyl (C6H11O6

-); rha = 
rhamnosyl (C6H11O5

-); ara = arabinosyl (C5H9O5
-); p = pyran; f = furan. This figure was 

obtained from (Yue et al., 2007). 
 



 20 

investigations being conducted on its botany, chemistry, pharmacology and therapeutic 

applications (Yue et al., 2007).      

 

Ginsenosides 

As previously mentioned, the most prominent and pharmacologically active constituents 

of ginseng are the saponin glycosides known as ginsenosides (Yue et al., 2007). Over 

thirty ginsenosides have been isolated and characterized from various Ginseng species 

(Fig. 1-4) (Buettner et al., 2006). In general, the concentration and types of ginsenosides 

present in a Ginseng plant vary widely, depending on the species, age and part of the 

plant used, and even the preservation or extraction method (Yue et al., 2007). It is 

therefore possible that products containing the same amount of total ginsenosides could 

contain different individual ginsenoside compositions and ratios (Buettner et al., 2006).  

     The variability in ginsenoside content in Ginseng contributes to the heterogeneity of 

reported findings in the research of this herbal (Buettner et al., 2006). This is because 

different ginsenosides have different pharmacological effects which can sometimes 

enhance or antagonize observed medicinal effects depending on their concentrations in a 

particular species (Buettner et al., 2006). Ginsenosides are usually classified into three 

major categories, namely protopanaxadiols (PPD) (e.g. Rb1, Rb2, Rc, Rd, Rg3, Rh2), 

protopanaxatriols (PPT) (e.g. Re, Rf, Rg1, Rg2, Rh1) and the oleanolic acid derivatives 

(Yue et al., 2007). These compounds have a steroid-like skeleton consisting of four trans-

rings, with differences from each other being dependent on the type (e.g. glucose, 

maltose and fructose), number of sugar moieties and the sites of attachment of the 

hydroxyl group (Yue et al., 2007). Ginsenosides are amphipathic in nature with the 
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hydroxyl (-OH) groups allowing both interactions between the polar head of 

phospholipid membranes and the β-OH group of cholesterol, and the hydrophobic steroid 

backbone interacting with the hydrophobic side chains of fatty acids and cholesterol. 

     Ginsenosides are thought to exhibit their actions through a number of mechanisms 

including signaling through the plasma membrane, cytosol, or even in the nucleus. They 

can initiate binding to membrane receptors such as ATPase pumps, ion transporters and 

channels, voltage gated channels and G-proteins and subsequently activate associated 

downstream signaling cascades (Yue et al., 2007). As they are amphipathic, they can 

intercalate into plasma membranes resulting in alterations in membrane fluidity, thereby 

triggering a series of cellular responses. Ginsenosides can also potentially bind to a 

number of intracellular steroid hormone receptors including glucocorticoid receptor 

(GCR), estrogen receptor (ER), progesterone receptor (PR), androgen receptor (AR) and 

mineral corticorticoid receptor (MR), using their hydrophobic 'steroid-like' backbone 

(Fig.1-5) (Yue et al., 2007). This can lead to the regulation of gene transcription by 

binding with the specific gene response elements. 

 

Absorption, Distribution and Metabolism 

After oral ingestion, ginsenosides pass through the stomach and small intestine and into 

the large intestine without decomposition by either gastric juice or liver enzymes (Fig. 1-

6) (Hasegawa, 2004) . However, upon arrival into the large intestines, ginsenosides may 

be deglycosylated by colonic bacteria prior to absorption and transit to the circulation. 

Studies in rats suggest that the oral bioavailability of the intact ginsenoside is extremely 

low, varying from 0.1-18 % depending on the type of ginsenoside tested  
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Figure 1-5.  

 

 

 

 

 

 

Figure 1-5. Schematic overview of ginsenoside-mediated genomic and non-genomic 
pathways. Ginsenosides possess a steroid-like skeleton composed of four trans-rings 
with different degrees of glyco-substitution. As ginsenosides are amphipathic in nature 
they can exhibit their actions at different cellular locations, such as the plasma 
membrane, cytosol and nucleus. Through the non-genomic pathway, (i) they can initiate 
their actions by binding with the transmembrane receptors, intercalating into the plasma 
membrane resulting in an alteration of membrane fluidity and (ii) binding with steroid 
hormone receptors (SHRs) present inside or outside the nucleus. (iii) the ligand-bound 
SHRs can translocate into the nucleus, where they regulate gene transcription by binding 
with the specific Response Elements (XRE). This is the so-called 'genomic pathway'. 
Consequently, the altered gene products can affect the final cellular responses. This 
figure was adapted from (Yue et al., 2007). 
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Figure 1-6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 1-6. Metabolic Activation of Ginsenosides.  
Putative metabolic pathways of ginsenosides in the body after oral administration. 
Ginsenosides are deglycosylated to M1 or M4 by intestinal bacteria. This is followed by 
absorption into the blood or mesenteric lymphatics. Although most of M1 is excreted as 
bile, some M1 may be esterified with fatty acids at C-3 of the aglycone moiety or C'-6 of 
the glucose moiety in the liver. EM1 is not excreted in the small intestine and 
accumulates in the liver longer than M1. However, most M4 is esterified with fatty acids 
and accumulates in tissues including the liver and lung. This figure was obtained from 
(Hasegawa, 2004). 
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(Hasegawa, 2004). In the large intestines, colonic bacteria cleave the oligosaccharide 

connected to the C-3 or C-20 hydroxyl group of the aglycone stepwise from the terminal 

sugar (Hasegawa, 2004).  

      Thirteen different metabolites might be formed from this process with 20S-

protopanaxadiol 20-O-β-D-glucopyranoside (M1) and 20S-protopanaxatriol (M4) being 

the major two (Hasegawa, 2004). Interstitial bacteria responsible for ginsenoside 

metabolism include, Prevotella oris, Eubacterium A-44, Bifidobacterium K506, 

Bacteroides JY6, and Fusobacterium K-60.  

     Following absorption from the intestines, metabolites can be further esterified with 

fatty acids by the liver. The resultant fatty acid conjugates are still active molecules that 

are sustained longer in the body than parental metabolites (Hasegawa, 2004). It is of 

importance to note that intestinal bacteria are changeable dependent on host conditions 

including diet, health and even stress.  Bacterial ginsenoside-hydrolyzing potentials can 

differ among humans and experimental mice (Hasegawa, 2004). Therefore, it is possible 

that the individual differences in bacterial ginsenoside-hydrolyzing potentials account for 

differences in Ginseng efficacy. Additionally, although the absorption, distribution and 

metabolism of ginsenosides has been studied in animals and in vitro, knowledge 

concerning the systemic availability of ginsenosides and their degradation products in 

humans is still vastly limited and is mostly inconclusive (Tawab et al., 2003). 

 

The effects of Ginseng on the immune system 

One of the primary uses of Ginseng is to modulate immune function (Kiefer and Pantuso, 

2003). Ginsenosides as well as the polysaccharide components of Ginseng have been 

shown to reduce inflammation in various experimental models (Ahn et al., 2006).  
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     Numerous experiments have demonstrated decreased inflammatory mediator 

production by activated innate immune cells after Ginseng treatment. This includes 

decreased cytokine production by macrophages and mast cells (Hofseth and Wargovich, 

2007; Kim et al., 2007). In addition, decreased expression and production of inducible 

inflammatory enzymes such as cycooxygenase-2 (COX-2) and inducible nitric oxide 

synthase (iNOS) in innate immune cells were demonstrated in a number of studies (Kim 

et al., 2007).  

     Limited information exists describing the effects of Ginseng or its derivatives on DCs. 

In the one study published on human DCs, there was an increase in maturation signals 

after treatment with M1 and M4 metabolites of Ginseng (Takei et al., 2004). However, 

there was no information presented about the effects of the non-metabolized components 

which retain biologic activity. 

     The effects of Ginseng and its derivatives on the adaptive immune system have also 

been widely studied in various experimental models. In many of these studies, Ginseng is 

touted as possessing adjuvant effects, as there is an enhancement of the humoral response 

in animals immunized with ovalbumin and dosed with Ginseng (Qin et al., 2006; Sun et 

al., 2005; Sun et al., 2007; Yang et al., 2007b).  This response was measured by analysis 

of antigen-specific antibody titers. In short-term (10-50 µg on days 1 and 15) treatment of 

immunized mice with Ginseng/ginsenosides there was an enhanced Th1 and Th2 

cytokine production, while long-term (30 consecutive days with 2 g/kg of a 50% ethanol 

extract of ginseng root) exposure resulted in decreased amounts of cytokines (Liou et al., 

2005; Yang et al., 2007a; Yu et al., 2004). Interestingly, in another experiment 

determining the actions of individual ginsenoside on T cell proliferation induced by 
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various T cell mitogens, ginsenoside Rb1 and Re enhanced proliferation while Rb2 

inhibited proliferation in vitro (Cho et al., 2002b). This suggests that ginsenosides can 

differentially regulate lymphocyte proliferation. 

     The effects of Ginseng and its components can therefore be described as being 

diverse. Properties of Ginseng are dependent on the branch of immunity studied, with 

most studies suggesting decreased inflammatory responses and modulation of adaptive 

immunity. Additionally, Ginseng possesses different ginsenoside and polysaccharide 

components that vary with season, time of harvest and location of growth. The 

composition of these components in Ginseng species may dictate the observed effects on 

immunity.  

 

Exploiting the effects of notoginseng on APCs for immunotherapy 

     The information described in the previous section demonstrates that Ginseng 

possesses immunomodulatory capability. Moreover, as described previously, many of the 

effects of Ginseng on immune cells occur through the action of ginsenosides. Of the three 

most popular Ginseng species, the highest concentration of ginsenosides is present in 

Panax notoginseng. Therefore, this herb is ideal for studying the effects of Ginseng 

extracts on immune cells. 

     As previously mentioned, APCs are among the first cells present at the site of an 

infection, releasing cytokines and other inflammatory proteins to combat pathogens. In 

addition, APCs are initiators and modulators of the adaptive immune response 

(Banchereau and Steinman, 1998; Medzhitov and Janeway, 1998). They are important 

intermediaries between microorganisms and the control of the immune system (Lee and 
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Iwasaki, 2007; Steinman, 2001). For this reason, regulation of APCs should significantly 

influence both innate and adaptive immunity.  

     Of the three types of APCs described above, macrophages and DCs are most likely to 

elicit an adaptive immune response (St Clair et al., 2007). This is because they reside in 

areas more likely to be exposed to antigens where they can phagocytose pathogens.  As a 

result of their superior antigen presenting capabilities, DCs have received the most 

attention as activators of T cells. Recently, research efforts have been focused on ways to 

manipulate DCs to control immune function. These studies take advantage of the basic 

properties of DCs and how they can manipulate them to treat or cure diseases. This 

includes loading DCs with a particular antigen, as in the case for vaccines against various 

pathogens such as HIV or even cancer cells. In this case, DCs will direct adaptive 

immune cells to elicit a response against pathogens or cells bearing this antigen. 

Alternatively, if suppression of the immune system is desired as in the case of 

inflammatory or autoimmune diseases, DCs can be manipulated to decrease their innate 

and adaptive immune functions. This may include reducing TLR activation, decreasing 

the production of pro-inflammatory cytokines, increasing the production of anti-

inflammatory cytokines, downregulating accessory/costimulatory molecules and 

suppression of T cell responses (Morel et al., 2003). 

     Various strategies have been used, including treatment with pharmaceutical non-

steroidal and steroidal agents, to manipulate APC activity. However, as numerous people 

suffer from inflammatory diseases, research continues on finding agents for modulating 

the immune system as a remedy for these ailments. 
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     Panax notoginseng has been demonstrated to have numerous effects on the immune 

system, including decreasing inflammation. However, further research is necessary to 

elucidate the effects of this herbal on both innate and adaptive immunity. As APCs play a 

major role in coordinating events in both innate and adaptive immune function, studying 

the effects of notoginseng on the fate and function of APCs should provide benefit to the 

fields of immunopharmacognosy and biomedical science. 

 

Hypothesis 

     Panax notoginseng alters APC fate and function by decreasing activation molecule 

expression and inflammatory mediator production by macrophages and DCs. To address 

this hypothesis, several studies were performed focusing on the following specific Aims: 

 

Aim 1. (Chapter 2) 

To determine if Panax notoginseng attenuates LPS-induced pro-inflammatory mediators 

in macrophages using RAW264.7 cells. 

 

Aim 2. (Chapter 3) 

To investigate whether Panax notoginseng decreases APC activation induced by selected 

Toll-Like receptor ligands in murine DC2.4 dendritic cells in vitro. 

 

Aim 3. (Chapter 4) 

To evaluate the effects of Panax notoginseng on innate and adaptive immune fate and 
function of primary APCs in vitro and in vivo. 
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In addition to these three specific Aims, studies were also conducted to determine 

whether Panax notoginseng could be used as a therapeutic agent to treat diseases with an 

inflammatory component. In our first set of studies, the general toxicity of ginseng was 

investigated with specific attention to the immune system. The second study was based 

on our previous results on the effects of notoginseng on decreased antigen uptake and 

inflammatory mediator production by APCs. In these experiments we assessed the effects 

of notoginseng on uptake of acetylated LDL (ac-LDL) by BMDCs. The aims for these 

two studies are described below. 

 

Aim 4. (Chapter 5) 

To determine the immunotoxicological effects of Panax notoginseng in vivo in ova 

immunized Balb/c mice. 

 

Aim 5. (Chapter 6) 

To investigate whether Panax notoginseng can reduce uptake of ac-LDL by BMDCs. 

 

 Finally, Chapter 7 will include a summary of the results presented in this dissertation and 

the significance and long-term implications of this study. This chapter will also provide 

insight on the future directions for continued research on the effects of Panax 

notoginseng on immune cells. 
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Abstract 
 

Herbals or dietary supplements are not regulated as drugs by the United States Food and 

Drug Administration (USFDA) although many may have associated therapeutic effects 

and toxicities. Therefore, the immunomodulatory effects of the herbal extract Panax 

notoginseng on cultured macrophages  (RAW264.7 cells) were investigated to address 

potential therapeutic or toxic effects. Cells were stimulated with LPS (1 µg/ml) and 

treated with notoginseng at 5, 25 and 50 µg/ml. Notoginseng inhibited the LPS-induced 

production of TNF-α and IL-6 by the cultured macrophages in a concentration-dependent 

manner. The expression of COX-2 and IL-1β mRNA was also attenuated by notoginseng. 

TNF-α production was inhibited in samples treated with notoginseng 24 hours before, or 

at the same time as LPS stimulation, but not in samples treated 8 hours after LPS 

stimulation. Notoginseng reduced expression of the accessory molecules CD40 and 

CD86 on the RAW264.7 cells while CD14 and TLR4 expression remained unaffected. 

Furthermore, Rb1 and Rg1 ginsenosides also inhibited macrophage production of TNF-α, 

but to a lesser extent than did the whole notoginseng extract. Collectively, these results 

indicate that notoginseng inhibits LPS-induced activation of RAW264.7 macrophages 

and demonstrates that notoginseng possesses anti-inflammatory and immunosuppressive 

properties in vitro. 

 

Keywords: Panax notoginseng; Ginsenosides; RAW264.7; Macrophages; Inflammation. 

Abbreviations: LPS, lipopolysaccharide; TNF-α, tumor necrosis factor-alpha; IL-1β, 

Interleukin-1 beta; IL-6, Interleukin-6; COX-2, cyclooxygenase-2. 
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Introduction 

       Over the last decade there has been a steady increase in the use of herbal and dietary 

supplements. The rise in popularity of natural products may be attributed to more 

aggressive sales tactics, enhanced Internet accessibility and dissatisfaction with 

conventional medicines (Barnes et al., 2004). There also exists a misconception that 

“natural” is synonymous with safe despite the fact that herbal products can cause medical 

problems if not taken correctly or if taken in excessive amounts (Klepser Bailey and 

Micheal, 1999). The United States Food and Drug Administration (USFDA) does not 

classify natural products as drugs despite associations with both therapeutic effects and 

toxicities. This means that, unlike conventional drugs, natural products are not required to 

meet rigorous standards to demonstrate safety, efficacy and mechanisms of action. 

Recent evidence demonstrates that natural products have the capacity to interact with 

conventional drugs via modulation of various xenobiotic metabolizing enzymes such as 

CYP2C9 and CY3A4 (He and Edeki, 2004). The rise in natural product usage and the 

potential for adverse or advantageous reactions has led to increased attention to their 

potential safety and efficacy. 

        Among these widely used natural products, ginseng was the second most frequently 

purchased herbal by the US adult population in 2002 (Barnes et al., 2004). Over thirteen 

species of ginseng have been identified, including Panax notoginseng (Burk.) F.H. Chen 

ex C.Y. Wu & K.M. Feng (Yun, 2001). The biologically active compounds of ginseng 

species are thought to be the saponins of which the ginsenosides Rb1, Rg1, Re1, Rh1 and 

the notoginsenoside R1 are considered to be the major components of Panax notoginseng 



 36 

(Li et al., 2005; Yun, 2001). The biological activity of Panax notoginseng is similar to the 

more widely known Panax ginseng plant, with differences in activity associated with 

higher levels of ginsenosides in the notoginseng species (Chuang et al., 1995; Zhu et al., 

2004). Ginseng is highly regarded in China for its therapeutic ability to stop 

hemorrhages, influence circulation, act as a tonic, induce variable effects on systemic 

blood pressure, and generate analgesic and anti-inflammatory effects (Xu et al., 2003). 

Notoginseng’s cardiovascular effects occur via inhibition of calcium entry through 

receptor-mediated calcium channels without affecting voltage gated calcium channels or 

intracellular calcium release (Kwan, 1995a). The ginsenosides Rb1 and Rg1 also have 

stimulatory effects on the central nervous system. They can improve memory, learning 

and confer neuroprotection in some instances (Attele et al., 1999).  

       The immunomodulatory effects of notoginseng have not been fully characterized. 

Several studies have described the effects of ginseng and ginsenosides on the immune 

system, but specific mechanisms of action have yet to be identified. Noted immunologic 

effects include anti-allergic and anti-inflammatory activities of Rh1 (Park et al., 2004), a 

reduction in TNF-α levels by Rb1 (Smolinski and Pestka, 2003a), an increase in both 

humoral and cell-mediated immune responses by Rg1 (Kwan, 1995a), and a decrease in 

phospholipase 2 activity and neutrophil numbers by P. notoginseng extract (Li and Chu, 

1999). 

       Macrophages are immune cells usually dispersed throughout the body. They are 

particularly important in innate immunity as they are among the first cells responding to 

microbial infection. They can kill pathogens directly by phagocytosis and indirectly via 

the secretion of pro-inflammatory cytokines such as the TNF-α, IL-1β, and IL-6.  These 
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cytokines lead to a variety of responses including the induction of cyclooxygenase-2 

(COX-2) expression (Turini and DuBois, 2002), increased expression of adhesion 

molecules on vascular endothelial cells (Luscinskas and Gimbrone, 1996), the induction 

of acute–phase response proteins by the liver (Diehl and Rincon, 2002), and the 

production of colony stimulating factors by activated endothelial cells which induce 

hematopoesis (Watowhich, 1996).  

       Macrophages also serve an important role as an interface between innate and 

adaptive immunity. They are responsible for processes such as antigen processing and 

presentation to antigen-specific T cells.  Following activation, macrophages can modulate 

expression of accessory molecules such as CD14 and TLR4 that facilitate LPS uptake 

and signaling (Dunzendrfer et al., 2004). Activation also induces costimulatory 

molecules such as CD40 and CD86 that promote sustained stimulatory interactions with 

T cells and the generation of adaptive immunity (Grewal and Flavell, 1998; Lenschow et 

al., 1996).  Any compound capable of modulating macrophage activation and/or function 

holds great promise for use in the treatment of chronic inflammatory diseases such as 

asthma, atherosclerosis and rheumatoid arthritis.  

       In this study, we hypothesized that notoginseng would reduce the production of pro-

inflammatory mediators by LPS-stimulated macrophages. To test this hypothesis, the 

production of the inflammatory mediators, TNF-α and IL-6, as well as the expression of 

IL-1β and COX-2 mRNA were evaluated in RAW264.7 murine macrophages treated 

with LPS and notoginseng. The effect of notoginseng on the expression of accessory 

molecules CD14, TLR4, CD86 and CD40 on RAW264.7 cells was also studied. Further 

studies examined the effects of the purified ginsenosides, Rb1 and Rg1, on LPS-induced 
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TNF-α and IL-6 production. Our results confirm and extend previous findings of the 

immunomodulatory effects of notoginseng. Experiments in this paper demonstrate for the 

first time that these effects are dependent on the duration of treatment, can alter pro-

inflammatory molecule expression at the mRNA level, and can modulate important 

accessory molecules commonly expressed on macrophages. Moreover, these results 

demonstrate that notoginseng attenuates the production of several pro-inflammatory 

mediators by macrophages following in vitro stimulation by LPS. 

 

 

 Materials and Methods 

 Chemicals 

Noto-GTM extracts from the plant Panax notoginseng (Burk.) F.H. Chen ex C.Y. Wu & 

K.M. Feng were kindly supplied by Technical Sourcing International, Inc. (TSI) 

(Missoula, MT).  Notoginseng was extracted from the root of the plant using ethanol and 

standardized to contain Rb1 and Rg1 ginsenosides at 35 and 34% of the whole extract, 

respectively. The quantification of Rb1 and Rg1 in the notoginseng extract was 

determined by high-performance liquid chromatography analysis by TSI.  Documentation 

by TSI also showed no detectable levels of Escherichia coli (E. coli) or Salmonella 

enterica in the notoginseng preparation (unpublished data). Certification of analyses were 

approved by Xia Ronglong (QA manager TSI). The extract was dissolved in complete 

media (see below) or culture-grade DMSO (Sigma-Aldrich, St. Louis, MO) and 

subsequently sterile-filtered through a 0.22 µM Millipore membrane. The purified 

ginsenosides Rb1 and Rg1 were purchased from Indofine Chemical Company, Inc. 
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(Hillsborough, NJ).  Lipopolysaccharide (LPS) from E. coli (055:B5) was obtained from 

Sigma-Aldrich. 

 

Cell Culture 

RAW264.7 cells were obtained from ATCC (Manassas, VA).  Cells were grown in RPMI 

(GibcoBRL, Grand Island, N.Y), supplemented with 10% FBS (Hyclone, Logan, UT), 50 

µM mercaptoethanol, 20 mM HEPES, 10 mM sodium pyruvate and 50 µg/ml gentamicin 

(GibcoBRL, Grand Island, N.Y).  RAW264.7 cells were maintained via weekly passage 

and cells were utilized for experimentation at 60-80% confluency. 

 

 Cell Activation and Treatment 

RAW264.7 cells (5 X 105 cells per well) were incubated overnight at 37 0C and 5% CO2 

in 6-well plates to facilitate attachment and spreading before experimentation. Cells were 

then stimulated with 1 µg/ml LPS and treated with 0, 5, 25 or 50 µg/ml notoginseng or 

Rb1 and Rg1 ginsenosides at concentrations equivalent to that in 50 µg/ml notoginseng. 

After an additional 24 hours supernatants were collected for evaluation by ELISA and 

cells harvested for RT-PCR and FACS analysis. 

 

 Cytokine Assays 

The inhibitory effects of notoginseng on the production of IL-6 and TNF-α were 

measured by enzyme-linked immunosorbent assay  (ELISA) using supernatants collected 

from treated cells. Samples were analyzed per the manufacturer’s recommendations with 

mouse cytokine-specific BD OptEIA ELISA kits (BD PharMingen, San Diego, CA). 
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 RT-PCR 

RT-PCR for the detection of IL-1β and COX-2 mRNA was performed as previously 

described (Shepherd et al., 2001).  Briefly, total RNA was isolated using Trizol and 

reverse transcribed into cDNA. COX-2 and IL-1β transcripts were identified using 

specific forward and reverse primers as per manufacturer’s instructions (Clonetech, Palo 

Alto, CA). β-2 microglobulin expression was included as an internal, housekeeping gene 

control. Ethidium bromide-stained reaction products were separated by electrophoresis on 

a 2% agarose gel in TBE and visualized by UV transillumination.  Images were captured 

by a Kodak EDAS 290 camera system (Kodak, Rochester, NY). 

     The primers used in these experiments were designed to span introns thereby allowing 

differentiation between amplified genomic DNA and cDNA PCR products. Primers 

sequences used were β-2 microglobulin 5′ ATGGCTCGCTCGGTGACCCT and 3′ 

TCATGATGCTTGATCACATG, IL-1β 5′ ATGGCAACTGTTCCTGAACTCAACT 

and 3′ CAGGACAGGTATAGATTCTTTCCTTT and COX-2 5′ 

AACACAGCTACGAAAACC and 3′ CACAGTATGATGTAACAGTCC. 

 

 

Flow cytometry 

 The detection of accessory molecule expression on RAW264.7 cells by fluorescent 

activated cell sorting (FACS) analysis was performed as previously described (Shepherd 

et al., 2001).  Briefly, RAW264.7 cells were harvested and washed with PAB (1% bovine 

serum albumin and 0.1% sodium azide in PBS). Cells were blocked with 50 µl of 600 
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µg/ml purified rat and/or hamster IgG (Jackson ImmunoResearch, West Grove, PA) for 

10 minutes to inhibit non-specific staining. Flurochrome-conjugated antibodies to mouse 

were then added at 1 µg/ml concentrations for an additional 10 minutes. The antibodies 

used in these experiments were CD86-APC, CD40-PE, TLR4-PE, CD14-FITC, and their 

corresponding isotype controls (BDPharmingen, San Diego, CA, except for the anti-

TLR4 eBiosciences, San Diego, CA).  One hundred thousand viable cells per treatment 

(as determined by light scatter profiles and propidium iodide staining) were analyzed 

using a BD FACSAria flow cytometer and FACSDiva software (BD Biosciences, San 

Jose, CA). 

 

 Statistics 

All statistical analyses were performed using GraphPad Prism 4.0a for the Macintosh 

(GraphPad Software, San Diego, CA).  Data signify the mean +/- of 3 samples and are 

representative of 3 independent experiments. Differences between two means were 

analyzed by Student’s t-test. Data sets with multiple comparisons were evaluated by one-

way analysis of variance (ANOVA) with Dunnett's post test.  Values of p < 0.05 were 

determined to be significant. 

 

 Results 

 Notoginseng suppresses the LPS-induced production of TNF-α and IL-6 by RAW264.7 

cells 

RAW264.7 cells are an immortalized monocyte/macrophage murine cell line that has 

been used extensively to evaluate monocyte and macrophage fate and function in vitro. 
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To evaluate the potential effects of notoginseng on macrophage function, RAW264.7 

cells were stimulated with 1µg/ml LPS and concomitantly treated with notoginseng. 

Unstimulated RAW264.7 cells secrete a basal level of TNF-α but barely detectable 

amounts of IL-6 (Figs. 2-1A and 2-1B, respectively). At the highest concentration tested, 

notoginseng did not evoke TNF-α or IL-6 release in the absence of LPS stimulation.  The 

addition of LPS resulted in a 9-fold and 120-fold increase in TNF-α and IL-6 protein 

levels, respectively.  Notoginseng significantly inhibited the production of both TNF-α 

and IL-6 in a concentration-dependent manner.  At the highest concentration of 

notoginseng tested, TNF-α production was reduced approximately 3-fold while IL-6 

production was reduced 7-fold. Importantly, no cytotoxicity was observed at any of the 

concentrations of notoginseng examined, as assessed by trypan blue exclusion (data not 

shown).  Also, no significant differences were observed in cell recoveries between 

notoginseng- and control-treated cells. 

 

 COX-2 and IL-1β mRNA levels are decreased in LPS-stimulated RAW264.7 cells 

following exposure to notoginseng 

Because of the prominent role of COX-2 and IL-1β in the inflammatory response, the 

potential for notoginseng to alter the expression of these mediators was investigated. 

COX-2 and IL-1β mRNA levels in RAW264.7 cells were evaluated by RT-PCR. The 

mRNA expression of the housekeeping gene β-2 microglobulin was used to normalize 

samples. Untreated RAW264.7 cells expressed detectable levels of both COX-2 and IL-

1β mRNA that increased following LPS stimulation (Fig. 2-2). Notoginseng inhibited  
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Figure 2-1 

 
 
 
A.                                                             B. 
                     

 
 
 
 
 
 
 
 
 
Figure 2-1. Notoginseng inhibits the LPS-induced TNF-α  and IL-6 production by 

RAW 264.7 cells. Cells were treated simultaneously with 1µg/ml LPS and 5, 25 or 50 

µg/ml of notoginseng. Supernatants were collected after 24 hours and assayed for TNF-α 

(A) and IL-6 (B) production as described in the Materials and Methods. Data represents 

mean +/- SEM of 3 samples. # indicates significant difference between stimulated and 

unstimulated cells; * indicates significant differences between the LPS-stimulated 

control- and notoginseng-treated samples (p < 0.05). Data are representative of 3 

independent experiments. 



 44 

Figure 2-2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

                        
 
 
 
 
Figure 2-2. Notoginseng decreases COX-2 and IL-1β  mRNA levels following LPS 

activation of cultured macrophages. RAW 264.7 cells were treated simultaneously with 

1µg/ml LPS and 5, 25 or 50 µg/ml of notoginseng for 24 hours. Cells were harvested, and 

mRNA extracted and transcribed into cDNA.  Expression levels of COX-2 and IL-1β 

mRNA were measured by RT-PCR and visualized by ethidium bromide staining of a 2% 

agarose gel.  β-2 microglobulin (β2) was included as a housekeeping gene to normalize 

all samples.  Data are representative of 3 separate experiments.  
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LPS-induced IL-1β mRNA expression in a concentration-dependent manner and reduced 

the expression of COX-2 mRNA in LPS-stimulated macrophages at the higher 

concentrations examined (Fig. 2-2). Interestingly, mRNA expression levels of both pro-

inflammatory genes were decreased in RAW264.7 cells that were not stimulated with 

LPS, but treated with the highest concentration of notoginseng only.  

 

 Notoginseng selectively modulates the expression of key accessory molecules 

The expression levels of accessory/costimulatory molecules on macrophages can dually 

affect their inflammatory responsiveness and capacity to function as antigen presenting 

cells. To determine if notoginseng modulates accessory molecule expression on activated 

macrophages, RAW264.7 cells were treated concomitantly with LPS and 50 µg/ml of 

notoginseng and the fluorescence intensity of CD40, CD86, CD14 and TLR4 measured 

by flow cytometry.  Only the highest concentration of notoginseng was evaluated in this 

experiment since significant inhibition of other inflammatory mediators had been 

demonstrated at this concentration (Figs. 2-1 and 2-2). Stimulation of RAW264.7 cells 

with LPS increased the expression of CD40, CD86 and CD14 (Table 2-1).  Conversely, 

LPS treatment results in down-regulation of TLR4 expression on RAW264.7 cells as has 

been previously reported (Akashi et al., 2000). Notoginseng decreased the LPS-induced 

expression of CD40 by almost 20% (Fig. 2-3A) and CD86 by 30% (Fig. 2-3B) on 

RAW264.7 cells. In contrast, cell surface expression of TLR4 and CD14 remained 

unchanged following notoginseng exposure (Table 2-1). 
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Table 2-1.  Notoginseng differentially affects the expression of LPS-induced 
accessory molecules. 
  
 
 

CD40 MCFb CD86 MCF CD14 MCF TLR4 MCF 

 
Untreateda 

 
320 ± 16 538 ± 25 117 ± 9 354 ± 25 

 
+ LPS 

 
513 ± 21#c 1060 ± 25# 192 ± 8# 252 ± 23# 

+ LPS 
NOTOGINSENG 429 ± 31#* 737 ± 35#* 194 ± 4# 244 ± 21# 

 
 

a  RAW264.7 cells were either unstimulated or stimulated with LPS (1µg/ml).  Some of 

the LPS-treated samples were concomitantly treated with notoginseng (50 µg/ml) for 24 

hours. 

b  Mean Channel Fluorescence (MCF) was determined by flow cytometry. 

c  Data shown are representative of four independent experiments.  Error bars indicate 

mean ± SEM; #, p < 0.05 for the comparison of unstimulated and LPS-activated cells; *, 

p < 0.05 for the comparison of LPS-stimulated cells treated with notoginseng or left 

untreated. 
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Figure 2-3 
 
 

A.                                                                                 
 
 
 
 
 
 
 
 
 
 
 
 
B. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-3. Notoginseng treatment of RAW264.7 cells selectively modulates cell 

surface expression of accessory molecules. RAW264.7 cells were unstimulated (white 

histogram), stimulated with LPS  (black histogram) or stimulated with LPS and 

concomitantly treated with 50 µg/ml notoginseng (grey histogram) for 24 hours. 

Representative histograms demonstrating the cell surface expression of CD40 (A) and 

CD86 expression (B) on viable RAW264.7 cells receiving various treatments were 

determined by FACS analysis.  Values in histograms correspond to specific Mean 

Channel Fluorescence (MCF) values for each treatment. Data are representative of 3 

independent experiments. 

 

CD40 

CD86 

N
um

be
r 

N
um

be
r 



 48 

TNF-α production is affected by notoginseng in a time-dependent manner 

To assess if the duration of notoginseng exposure results in differential effects on TNF-α 

production, RAW264.7 cells were either pretreated with notoginseng for 24 hours prior to  

LPS addition (-24 hr timepoint), treated with notoginseng and LPS simultaneously (0 hr), 

or treated with notoginseng 8 hours (+8 hrs) after LPS addition. All samples were 

collected 24 hours after LPS stimulation.  Consistent with the results presented in Fig. 2-

1, concomitant treatment of RAW264.7 macrophages with LPS and notoginseng 

significantly suppressed the production of TNF-α after 24 hours of culture by more than 

50% (Fig. 2-4). Pretreatment of RAW264.7 cells with notoginseng for 24 hours resulted 

in a 17% decrease in TNF-α levels.  It should be noted that for these cultures, the herbal 

extract was not removed from the medium after 24 hours but remained for the entire 

culture period of 48 hours.  In contrast, delaying the addition of notoginseng by 8 hours 

relative to LPS treatment, resulted in no significant reduction of TNF-α although a trend 

towards lesser levels was observed.  

 

 The purified ginsenosides Rb1 and Rg1 modulate the production of TNF-α by RAW264.7 

cells 

The whole notoginseng extract used in the preceding experiments is comprised of several 

ginsenosides although primarily of Rb1 (35%) and Rg1 (34%). Because ginsenosides are 

believed to comprise much of the biological activity of notoginseng, we sought to define 

the potential inhibitory effects of the purified ginsenosides Rb1 and Rg1 on LPS-induced 

TNF-α production by RAW 264.7 cells. To more closely mimic the approximate 

concentration of ginsenosides present in the whole extract, Rb1 and Rg1 were 
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Figure 2-4 

 
 
 
 

 

 

 

 

 

 

 

 
Figure 2-4. Variable notoginseng treatment affects the LPS-induced production of 
TNF-α  by RAW 264.7 cells. Cells were treated with notoginseng at three different 
timepoints: –24 hours, 0 hours and 8 hours, relative to LPS stimulation. Supernatants 
were collected 24 hours after LPS addition and TNF-α levels measured by ELISA. Data 
represents mean +/- SEM of 3 samples. # Indicates significant differences between 
stimulated and unstimulated cells; * indicates significant differences between LPS-
stimulated controls and LPS-stimulated, notoginseng-treated samples (p < 0.05). Data are 
representative of 3 separate experiments. 
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standardized to approximate concentrations found in 50 µg/ml of the intact notoginseng 

extract. Following LPS activation of RAW264.7 cells, both Rb1 and Rg1 and a 

combination of the Rb1/Rg1 purified compounds significantly inhibited TNF-α 

production (Fig. 2-5A). However, neither ginsenoside alone or in combination attenuated 

TNF-α production to the extent that was observed following exposure to the whole 

notoginseng extract.  In addition, the whole notoginseng extract and ginsenoside Rg1 

caused significant inhibition of LPS-induced IL-6 by RAW264.7 cells (76% and 24% of 

LPS-stimulated controls, respectively). Conversely, no significant suppression was 

detected after the addition of Rb1 to these cultures (Fig. 2-5B). 

 

Discussion and conclusion 

       In the current study, the potential for notoginseng to decrease the LPS-induced 

production or expression of cytokines, TNF-α, IL-6, and IL-1β, was tested because of 

their significance in inflammatory conditions. The production of these inflammatory 

molecules by RAW264.7 cells can be induced in response to LPS stimulation (Beutler, 

2003; Rice and Bernard, 2005). TNF-α is primarily produced by monocytes, 

macrophages and T-cells (Bondeson, 1997) and has various pro-inflammatory effects on 

many cell types. It is a potent activator of macrophages, can stimulate the production or 

expression of IL-1β, IL-6, prostaglandin E2, collagenase, type I and III collagens, 

adhesion molecules and is a growth factor for both B and T lymphocytes (Bondeson, 

1997). Both TNF-α and IL-1β can lead to cartilage destruction and bone resorption and 

are important cytokines in chronic inflammatory diseases such as rheumatoid arthritis 

(RA) (Bondeson, 1997; Dayer, 2004). IL-6 has also been shown to be important in a  
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Figure 2-5 
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Figure 2-5.  The production of TNF-α  and IL-6 is selectively suppressed by the 
whole notoginseng extract and purified ginsenosides.  LPS-stimulated cells were 
treated with 50 µg/ml whole notoginseng extract or purified Rb1 and/or Rg1 compounds. 
Supernatants were collected after 24 hours and assayed for TNF-α and IL-6 production 
by ELISA. Data represents mean +/- SEM of 3 samples. Statistically significant 
differences (p < 0.05) between treatment groups are indicated by different letters.  Data 
are representative of 3 independent experiments. 
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variety of inflammatory conditions and is particularly important in the production of 

acute phase proteins (Diehl and Rincon, 2002). Although the present study models 

predominately an acute inflammatory condition, our results provide valuable information 

variety of inflammatory conditions and is particularly important in the production of on 

the effects of notoginseng on macrophages, cells critical in the process of chronic 

inflammation (Lefkowitz et al., 1995). The results presented herein show that 

notoginseng can decrease the LPS induced production of TNF-α and IL-6 and reduce the 

mRNA expression of IL-1β and COX-2 in LPS-stimulated RAW264.7 cells (Figs. 2-1 

and 2-2). Cyclooxygenase is a key enzyme involved in the conversion of arachidonic acid 

into prostaglandins (Turini and DuBois, 2002). It has been demonstrated to be a critical 

pro-inflammatory enzyme contributing to the development of many chronic 

inflammatory diseases such as cardiovascular disease, cancer and RA (Rocca and 

FitzGerald, 2002). IL-1β is a cytokine that is produced early in the generation of an 

inflammatory response (Stylianou and Saklatvala, 1998). It is produced in increasing 

amounts in diseases such as RA and atherosclerosis (Andreakos et al., 2004a; Bondeson, 

1997). Our results demonstrate that notoginseng effectively inhibits the generation of 

cytokines and enzymes in this monocyte/macrophage cell line that are paramount in the 

generation of an inflammatory response. 

       In addition to the effects on cytokines production, notoginseng also significantly 

affects the expression of key accessory molecules expressed on macrophages. Bacterial 

products are potent inducers of many pro-inflammatory genes including 

accessory/costimulatory molecules such as CD40 and CD86. CD40 and CD86 

subsequently promote sustained interactions between APCs and T cells (Grewal and 



 53 

Flavell, 1998). When stimulated with LPS, the cell surface expression of CD86 and 

CD40 is increased on RAW264.7 cells (Fig. 3 and Table 1). The upregulation of these 

molecules is typically observed during the course of an inflammatory response and 

functions to facilitate the recruitment and activation of leukocytes (Grewal and Flavell, 

1998; Lenschow et al., 1996; Li and Stark, 2002).  Notoginseng effectively decreased the 

expression of CD40 and CD86 molecules (Fig. 3). Because CD40 and CD86 are required 

for productive interactions between T cells and antigen presenting cells, decreasing their 

expression would be expected to attenuate conditions such as chronic inflammatory 

disease and autoimmunity (Lenschow et al., 1996; Quezida et al., 2004). In our 

experiments, LPS was used as the prototypical inflammatory stimulus because of its 

ability to initiate a range of pro-inflammatory mediators (Abreu and Arditi, 2004). LPS 

signaling occurs when LPS binding protein catalyzes the transfer of LPS to membrane or 

soluble CD14, which then mediates recognition of LPS via TLR4 signaling (Dunzendrfer 

et al., 2004). LPS (as well as TNF-α and IL-1β) is an effective activator of NF-κB 

(Hanada and Yoshimura, 2002; Karin and Ben-Neriah, 2000a). NF-κB activation induces 

the expression of many inflammatory cytokine genes (including TNF-α and IL-1β) and 

accessory molecules.  In our studies, notoginseng did not affect the expression of TLR4 

or CD14 on RAW264.7 cells suggesting that this herbal extract does not decrease LPS 

uptake or TLR 4 signaling in these cells.  However, although TLR4 and CD14 expression 

was unaffected by notoginseng, LPS signaling could potentially be interrupted in its 

downstream signaling pathway as has been previously reported (Lee et al., 2002).  In 

these studies, disruption of NF-κB activation was demonstrated in both mouse skin cells 

and the human pro-myelomonocytic cell line, HL-60, by purified ginsenosides (Keum et 
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al., 2003a; Lee et al., 2002).  Furthermore, Oh et al. recently reported that 20(S)-

protopanaxatriol, a ginsenoside metabolite, inhibits iNOS and COX-2 expression via the 

inactivation of NF-κB in LPS-stimulated RAW264.7 cells (Oh et al., 2004b).  Currently, 

studies in our laboratory are underway to further characterize the effects of notoginseng 

on the activation of NF-κB. 

       Varying the duration of notoginseng exposure results in differential effects on the 

inflammatory responsiveness of our cultured macrophages. In studying the time–

dependent effects of notoginseng on TNF-α production, a trend was observed towards 

decreasing LPS-induced production of TNF-α by cells stimulated 8 hours prior to 

notoginseng addition. However, significant suppression of this cytokine was only noted 

for both the pretreated and concomitant-treated samples (Fig. 2-4). Similar results in our 

laboratory have also been observed with the dendritic cell line, DC2.4 (manuscript in 

preparation).  Reduced effects following delayed notoginseng treatment may be attributed 

to an inability of notoginseng to disrupt LPS-stimulated signaling cascades following an 

initial activation period as notoginseng may affect initial events in the activation of 

RAW264.7 cells. Alternatively, LPS signaling may also reduce the uptake of notoginseng 

into cells ultimately decreasing its effectiveness.  Thus, it is possible that notoginseng and 

LPS may bind to a similar receptor, thereby antagonizing the uptake of the other, if not 

added concurrently.  This possibility is currently being investigated in our laboratory. 

      Ginsenosides are believed to be the primary bioactive compounds in notoginseng. 

Ginsenoside composition of plants can vary widely depending on factors such as time of 

harvest, location and seasonal variations (Lenschow et al., 1996). These parameters can 

result in the “yin and yang” in ginseng with various extracts containing significantly 
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different activities based on variable ginsenoside profiles (Sengupta et al., 2004). 

Therefore, from a clinical perspective it is important to determine if a particular 

ginsenoside accounted for the bioactivity of notoginseng. To address this possibility, 

purified samples of ginsenosides Rb1 and Rg1 were obtained and their concentration 

matched to that present in our whole notoginseng extract. Although these purified 

ginsenosides suppressed TNF-α production, the degree of suppression was not as great as 

that observed in our original notoginseng samples even when both ginsenosides were 

combined (Fig. 2-5). This result could be because although Rb1 and Rg1 accounted for 

approximately 70% of our extract, the ginsenoside Re1 and notoginsenoside R1 (each 

comprising approximately 4% of notoginseng) may also be contributing to the activity of 

the whole extract. Indeed, studies have shown that notoginsenoside R1 can significantly 

antagonize the endotoxin-induced activation of endothelial cells in vitro and endotoxin-

induced lethality in mice (Zhang et al., 1997). Furthermore, our whole notoginseng 

extract was obtained from a different commercial source than our purified ginsenosides.  

Thus, even if these compounds are similar in concentration, stereoisomerism may still 

exist. Stereoisomerism of natural and synthetic compounds has been shown to contribute 

to different activities in vivo and in vitro (Mullenheim et al., 2001; Smith et al., 2005). In 

vitro studies with different enantiomers of lipoic acid showed that the S isomer had more 

activity than the R isomer. Similar mechanisms could explain the reduced suppressive 

effects observed when the RAW264.7 cells were treated with the purified ginsenoside 

compounds but not the whole extract of notoginseng.  

       In conclusion, the current study demonstrated that notoginseng treatment of 

RAW264.7 cells results in a decreased production of the inflammatory cytokines TNF-α 
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and IL-6, mRNA expression of COX-2 and IL-1β, and cell surface expression of CD40 

and CD86 following LPS stimulation. These results establish that notoginseng has potent 

anti-inflammatory effects and may hold great promise for use in the treatment of acute 

and chronic inflammatory diseases in humans. 
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Abstract 
    
Dendritic cells (DCs) play a central role in the regulation of both innate and adaptive 

immune responses. The medicinal herb, Panax notoginseng, has been shown to attenuate 

the production of pro-inflammatory mediators by innate immune cells. Given the 

importance of DCs in immunity, we investigated the potential for notoginseng extracts to 

modulate Toll-like receptor (TLR) ligand-induced activation of cultured DC2.4 cells. 

Following stimulation with LPS, CpG or poly(I:C) and treatment with 0-50 µg/ml 

notoginseng extract for 24 hours, DCs were evaluated for various phenotypic and 

functional readouts. Notoginseng reduced the LPS-, CpG- and poly(I:C)-induced 

production of TNF-α by DC2.4 cells. Also, IL-6 production by notoginseng-treated cells 

stimulated with LPS and CpG but not poly(I;C) was reduced when compared to controls.  

TLR ligand-induced CD40 expression was attenuated by notoginseng. In contrast, 

notoginseng decreased CD86 levels on DCs activated with LPS and poly(I:C) but not 

CpG. Inhibition of TNF-α production was time-dependent in LPS-stimulated cells, 

occurring only with pretreatment or concurrent treatment of notoginseng but not after 

delayed addition of the herbal extract. Additionally, ginsenoside Rg1 more effectively 

inhibited LPS-stimulated cytokine production by DC2.4 cells than ginsenoside Rb1. 

Taken together, these results demonstrate that notoginseng inhibits the production of 

specific inflammatory molecules and innate immune responsiveness by DCs following 

TLR activation. 

 
Keywords: Panax notoginseng; Ginsenosides; DC2.4; Dendritic cells; LPS; 

Inflammation; Immunity; Toll-like receptor. 
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Introduction   

Dendritic cells (DCs) are the primary professional antigen presenting cells of the 

immune system. They have the specialized ability to recognize, capture and process 

antigen (Ag) in both peripheral blood and tissues (Figdor et al., 2004). Like other 

immune cells, DCs are capable of recognizing microbial components using pattern-

associated molecular patterns (PAMPs) that are common constituents of bacteria and 

viruses. Many PAMPS bind to specific pattern-recognition receptors on DCs, including 

Toll-like receptors (TLRs) resulting in immune activation. TLR stimulation leads to up-

regulation of inflammatory mediators such as the pro-inflammatory cytokines TNF-α and 

IL-6. Subsequently, DCs mature and migrate to secondary lymphoid organs, where they 

interact with naïve T cells and induce antigen-specific immune responses (Geijtenbeek et 

al., 2004). This process of DC maturation includes the sequential loss of 

endocytotic/phagocytic receptors, upregulation of costimulatory molecules such as CD40 

and CD86, and changes in morphology (Banchereau et al., 2000a).  

Toll-like receptors are a major family of cell-bound pattern-recognition receptors that 

sense infection via recognition of PAMPs and signal DCs for activation.  For example, 

TLR3 recognizes viral double-stranded RNA and induces innate immunity, TLR4 is the 

primary LPS receptor and TLR9 is the receptor for bacterial DNA (Tsujimoto et al., 

2006). Natural and synthetic ligands such as poly(I:C), LPS and CpG have been used 

extensively to model microbial activation of TLR3, TLR4 and TLR9, respectively.  

Binding of ligands to these TLRs induces nuclear factor kappa B  (NFκB) activation and 

subsequent upregulation of numerous immune and inflammatory genes (Banchereau et 

al., 2000a; Hoshino et al., 2002). Studies suggest modulation of these immune and 
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inflammatory mediators can regulate the generation, development and progression of 

several inflammatory diseases including rheumatoid arthritis and atherosclerosis (Sharma 

and Li, 2006a; Wang et al., 2006a). Because DCs are key regulators of inflammation and 

immunity, one viable approach for the treatment of inflammatory and autoimmune 

diseases may be found via the intentional modulation of DC fate and function (Figdor et 

al., 2004; Pulendran et al., 1997). 

In the last decade there has been a dramatic increase in the use of dietary supplements 

including herbal products. Information about the safety and efficacy of most natural 

products is vastly inadequate. This insufficiency stems from an unregulated industry, 

which is in stark contrast to the tightly regulated pharmaceutical industry. Under the 

Dietary Supplement Health and Education Act of 1994, supplements in the U.S. are not 

subjected to the same safety requirements that apply to prescription and over-the-counter 

medications (Berman and Straus, 2004b; Science, 2004). This means that unlike 

conventional drugs, manufacturers of natural products are not required to conduct 

rigorous tests to demonstrate safety, efficacy or mechanisms of action (Goldma, 2001; 

Science, 2004). Recently, a survey by the U.S. National Academy of Sciences showed 

that a majority of consumers believe that herbs are just as safe, effective and cost-

efficient as non-herbal medicines (Klepser and Klepser, 1999).  In light of these beliefs 

and the increased usage of herbals, rigorous investigation is needed to demonstrate safety, 

mechanisms of action and efficacy of these products (Berman and Straus, 2004a). 

 Ginseng is a widely consumed medicinal herb, both in the United States and 

worldwide (Barnes et al., 2004). Over thirteen different species of ginseng have been 

identified. Within the Panax genus, extracts of Panax notoginseng typically contain 
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higher ginsenoside concentrations than formulations of the more widely used Panax 

ginseng (Harkey et al., 2001a). Ginsenoside compounds are saponins which are unique to 

the Panax species and are purported to possess the primary pharmacological activity of 

ginseng (Harkey et al., 2001a). These compounds are also used as markers for quality 

control and standardization of Panax species. Over twenty different saponins have been 

identified in notoginseng including ginsenosides, notoginsenosides and gypenoside 

(Dong et al., 2003b). Of these, the ginsenosides Rg1, Rb1, Rd1 and notoginsenoside R1 

are considered the major bioactive components (Dong et al., 2003b).  

   To date, several studies exist describing the immunomodulatory effects of ginseng 

and ginsenosides; however, specific mechanisms of action of these phytochemicals 

remain to be defined. Some of the reported immunologic effects of ginseng and its 

constituents include the anti-allergic and anti-inflammatory activities of ginsenoside Rh1 

(Park et al., 2004), a reduction in TNF-α levels by ginsenoside Rb1 (Smolinski and 

Pestka, 2003b), an increase in both humoral and cell-mediated immune responses by 

ginsenoside Rg1 (Kwan, 1995b), and a decrease in phospholipase 2 activity and 

neutrophil numbers by whole P. notoginseng extract (Li and Chu, 1999). Additionally, 

metabolites of ginseng have been shown to promote human dendritic cell maturation and 

Th1 polarization in vitro (Fogel-Petrovic et al., 2004).  

    Previously, we have demonstrated that P. notoginseng has immunomodulatory 

effects on murine macrophages in vitro (Rhule et al., 2006b). In the present study we 

hypothesized that notoginseng will reduce the production of inflammatory mediators in 

TLR ligand-stimulated murine dendritic cells.  To test our hypothesis, DC2.4 cells were 

stimulated with LPS, CpG or poly(I:C) and treated with notoginseng. The production of 
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pro-inflammatory cytokines as well as the expression of accessory molecules important 

in DC activation and function were assessed following notoginseng treatment. 

Concentration- and time-dependent studies were carried out using LPS as the prototypical 

inflammatory stimulus. Finally, the effects of the purified ginsenosides Rb1 and Rg1 on 

LPS-induced TNF-α and IL-6 production were compared to our whole notoginseng 

extract. Our results demonstrate for the first time the immunomodulatory effects of 

notoginseng and purified ginsenosides on murine DCs in response to several TLR 

ligands. These results demonstrate that notoginseng selectively attenuates the production 

of pro-inflammatory mediators by DC2.4 cells following stimulation in vitro. 

 
Materials and Methods 
 
Chemicals 

 
NotoG™ extracts from the plant, Panax notoginseng (Burk) F. H. Chen ex C.Y. Wu 

& K.M. Feng were generously provided by Technical Sourcing International, Inc. (TSI, 

Missoula, MT).  Notoginseng was extracted from the root of the plant using ethanol and 

contained high levels of the ginsenosides Rb1 and Rg1 (35% and 34% of the whole 

extract, respectively) as determined by HPLC analysis (unpublished data).  Notoginseng 

extracts did not contain detectable levels of Escherichia coli or Salmonella enterica 

(unpublished data).  Certification of analyses was approved by Xia Ronglong (QA 

manager, TSI).  The extract was dissolved in complete media (see below) or culture-

grade DMSO (Sigma-Aldrich, St. Louis, MO) and sterile-filtered through a 0.22 µM 

Millipore membrane. The purified ginsenosides Rb1 (CAS number: 41753-43-9) and Rg1 

(CAS number: 22427-39-0) were purchased from Indofine Chemical Company, Inc. 

(Hillsborough, NJ). Lipopolysaccharide (LPS) from Escherichia coli (055:B5) was 
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obtained from Sigma-Aldrich, and CpG oligonucleotide and poly (I:C) were purchased 

from InvivoGen (San Diego, CA).   

    
Cell Culture 

 
DC2.4 cells, a murine dendritic cell line (Zhenhai et al., 1997), were kindly provided 

by Dr. Kenneth Rock (University of Massachusetts Medical Center, Worcester, MA). 

Cells were grown in complete media comprised of DMEM (GibcoBRL, Grand Island, 

N.Y), supplemented with 10% FBS (Hyclone, Logan, UT), 10 mM HEPES, 2 mM L-

glutamine and 50 µg/ml gentamicin (GibcoBRL, Grand Island, N.Y).  DC2.4 cells were 

maintained at 37˚C in a humidified incubator with 5% CO2. Cells were maintained via 

weekly passage and utilized for experimentation at 60-80% confluency. 

 

Cell Activation and Treatment 

DC2.4 cells (1 X 106) were cultured in 1 ml complete media for 24 hrs in 6-well 

plates. Cells were then stimulated with 1 µg/ml LPS, 0.5 µM CpG or 12.5 µg/ml 

poly(I:C) and treated with varying concentrations of notoginseng or purified ginsenosides 

for an additional 24 hours. In some experiments, DC2.4 cells were pre-treated with 

notoginseng for 24 hrs before LPS stimulation. Supernatants were collected after 24 

hours and frozen at -20 0C for subsequent evaluation of cytokines. Additionally, cells 

were harvested for flow cytometric evaluation of costimulatory molecules. 

 

Cytokine Assays 

Levels of IL-6 and TNF-α in supernatants from cultured cells were analyzed by 

enzyme-linked immunosorbent assay  (ELISA). Samples were evaluated per the 
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manufacturer’s recommendations using mouse cytokine-specific BD OptEIA ELISA kits 

(BD PharMingen, San Diego, CA). 

 

Flow cytometry 

The expression of costimulatory molecules on DC2.4 cells was determined by flow 

cytometric analysis as previously described (Shepherd et al., 2001).  Briefly, DC2.4 cells 

were harvested and washed with PAB (1% bovine serum albumin and 0.1% sodium azide 

in PBS).  Non-specific staining of cells was blocked with 30 µg per sample of purified rat 

and/or hamster IgG (Jackson ImmunoResearch, West Grove, PA). Fluorochrome-

conjugated antibodies to mouse CD86 and CD40, and their corresponding isotype 

controls were purchased from BDPharmingen. One hundred thousand events per sample 

were collected from viable cells (as determined by light scatter profiles and PI staining) 

using a BD FACSAria flow cytometer, analyzed by FACSDiva (version 4.0) software 

(BD Biosciences, San Jose, CA) and histograms generated using FCS Express (version 3) 

software (De Novo Software, Thornhill, Ontario). 

 

NFκB Assay 

 DC2.4 cells (1 X 106 cells per well) were stimulated with 1 µg/ml LPS and treated 

with 50 µg/ml notoginseng for 0, 30 and 90 minutes in 6-well plates. At each time point, 

cells were harvested and nuclear protein extracts prepared using the Active Motif nuclear 

lysis kit (Active Motif, Carlsbad, CA). Protein content of nuclear extracts was measured 

using a BCA protein assay kit (Pierce, Rockford, IL). NFκB p65 binding activity was 

determined using the Active Motif TransAM NFκB p65 kit according to the 
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manufacturer’s directions. Briefly, 2.5 µg of nuclear protein was incubated for 1 hour in a 

96-well plate coated with the NFκB consensus oligonucleotide sequence (5’-

GGGACTTTCC-3’). NFκB p65 specific binding was quantified by absorbance (450nm) 

using a VersaMax spectrophotometer (Molecular Devices, Sunnyvale, CA). 

 

Statistics 

All statistical analyses were performed using GraphPad Prism 4.0a for the Macintosh 

(GraphPad Software, San Diego, CA).  Differences between two means were analyzed by 

Student’s t-test. Data sets with multiple comparisons were evaluated by one-way analysis 

of variance (ANOVA) with Dunnett's post test.  Values of p < 0.05 were determined to be 

significant. 

 

Results   
 

Notoginseng inhibits LPS-induced TNF-α and IL-6 production by DC2.4 cells 
 

 In this study, the immunomodulatory effects of notoginseng were characterized using 

DC2.4 cells, a murine dendritic cell line. DC2.4 cells were stimulated with 1 µg/ml LPS 

and concomitantly treated with 0, 5, 25 or 50 µg/ml notoginseng. In unstimulated DC2.4 

cells, notoginseng did not evoke either TNF-α or IL-6 release above basal levels even at 

the highest concentration used (Fig. 3-1A and 3-1B, respectively). The addition of LPS 

resulted in a 2-fold and 23-fold increase in the production of TNF-α and IL-6, 

respectively. Notoginseng significantly inhibited the production of both TNF-α and IL-6 

in a concentration-dependent manner. At the highest concentration of notoginseng tested 

(50 µg/ml), LPS-induced TNF-α production was reduced approximately 2-fold. In 
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addition, nearly a 3-fold reduction in IL-6 production was observed at the 50 µg/ml 

concentration. Importantly, the reduction in LPS-induced cytokine production was not 

due to cytotoxicity, as viability of cells was similar to controls at all concentrations of 

notoginseng examined as assessed by trypan blue exclusion (data not shown).  

 
The effects of notoginseng on TNF-α production are time-dependent 
 

Notoginseng was evaluated for its potential to suppress TNF-α production by DC2.4 

at varying time points relative to LPS stimulation. DC2.4 cells were either pretreated with 

50 µg/ml of notoginseng for 24 hours prior to LPS addition (-24 hr timepoint), treated 

with notoginseng and LPS simultaneously (0 hr), or treated with notoginseng 8 hours 

after LPS addition (+8 hrs). All samples were collected 24 hours after LPS exposure.  As 

expected, concomitant treatment of DC2.4 cell with LPS and notoginseng significantly 

suppressed the production of TNF-α after 24 hours of culture by more than 50 percent 

(Fig. 3-2). Pretreatment of DC2.4 cells with notoginseng for 24 hours resulted in a 20% 

decrease in TNF-α levels.  In a separate experiment, removal of notoginseng from the 

medium after 24 hours of pre-treatment, but prior to LPS stimulation, also resulted in 

suppression of TNF-α following additional 24 hr incubation with LPS (data not shown).  

In contrast, addition of notoginseng 8 hours after LPS stimulation did not significantly 

inhibit TNF-α secretion, although a trend towards decreased levels was observed (Fig. 3-

2).  

Notoginseng modulates the production of TNF-α and IL-6 by DCs stimulated with 
additional TLR ligands 

 
Dendritic cells can be activated to secrete pro-inflammatory cytokines by numerous 

pathogens expressing different TLR ligands. In this regard, the responsiveness of DCs to  
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Figure 3-1. 
 
 
A.                                                                  B. 
 

            
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-1. Notoginseng suppresses LPS-induced TNF-α  and IL-6 production by 
DC2.4 cells. DCs were treated with 0, 5, 25 or 50 µg/ml of notoginseng and/or LPS 
(1µg/ml). Supernatants were collected after 24 hours and assayed for TNF-α (A) and IL-
6 (B) production as described in the Materials and Methods. Data represents mean ± 
SEM of three samples. Hash (#) indicates significant differences between LPS-stimulated 
and unstimulated cells; asterisk (*) indicates significant differences between the LPS-
stimulated control- and notoginseng-treated samples (p<0.05). Data are representative of 
three independent experiments. 
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Figure 3-2. 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 
 
 
Figure 3-2. Variable notoginseng treatment affects LPS-induced production of TNF-
α  by DC2.4 cells. Cells were treated with 50 µg/ml notoginseng (NG) at three different 
time-points: –24, 0 and 8 hours, relative to LPS stimulation. Supernatants were collected 
24 hours after LPS addition and TNF-α levels measured by ELISA. Data represents mean 
± SEM of three samples. Hash (#) indicates significant differences between LPS-
stimulated and unstimulated cells; asterisk (*) indicates significant differences between 
LPS-stimulated controls and LPS-stimulated, notoginseng-treated samples (p<0.05). Data 
are representative of three separate experiments. 
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varied TLR ligands following exposure to notoginseng was examined. DC2.4 cells were 

stimulated with 1 µg/ml LPS, 0.5 µM CpG or 12.5 µg/ml poly(I:C) and concomitantly 

treated with 50 µg/ml notoginseng. The addition of LPS, CpG and poly(I:C) significantly 

increased the production of TNF-α by DC2.4 cells (Fig. 3-3A) (Sparwasser et al., 1998; 

Tsujimoto et al., 2006). Notoginseng inhibited the production of TNF-α by 46%, 36% 

and 50% for LPS, CpG and poly(I:C), respectively (Fig. 3-3A). There was a significant 

increase in the production of IL-6 in LPS and CpG stimulated samples while, barely 

detectable levels of IL-6 were present with poly(I:C) stimulation (Fig 3-3B). Notoginseng 

reduced the levels of IL-6 in the LPS- and CpG- stimulated samples (Fig 3-3B). In 

contrast, notoginseng did not inhibit the limited production of IL-6 by the poly(I:C)-

stimulated DC2.4 cells (Fig 3-3B). As previously observed, the reduction in TLR-induced 

cytokine production was not due to cytotoxicity, as viability of notoginseng-treated cells 

was similar to controls as determined by trypan blue exclusion (data not shown).  

 

Expression of TLR-induced costimulatory molecules by DCs is selectively affected by 

notoginseng 

Because of the observed immunomodulatory effects of notoginseng on TLR-induced 

cytokine production, the potential for notoginseng to modulate costimulatory molecule 

expression on activated DCs was examined by flow cytometry. DC2.4 cells were treated 

concomitantly with each of the 3 TLR ligands and 50 µg/ml of notoginseng.  The 

fluorescence intensity of two critical costimulatory molecules, CD40 and CD86, was 

assessed. Stimulation of DC2.4 cells with LPS, CpG and poly (I:C) significantly 

increased the expression of CD40 (Table 3-1 and Fig. 3-4) (Sparwasser et al., 1998) . 

CD86 expression was significantly increased following LPS and poly(I:C) stimulation, 
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Figure 3-3. 
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Figure 3-3. Notoginseng selectively reduces TLR ligand-induced production of TNF-
α  and IL-6 by DC2.4 cells. DCs were unstimulated or stimulated with LPS, CpG or 
poly(I:C) and concurrently treated with 50 µg/ml notoginseng (NG) for 24 hours. 
Supernatants were collected and assayed for TNF-α and IL-6 production by ELISA. Data 
represents mean ± SEM of three samples. Hash (#) indicates significant differences 
between stimulated and unstimulated cells; asterisk (*) indicates significant differences 
between the TLR ligand-stimulated control- and notoginseng-treated samples (p<0.05). 
Data are representative of three independent experiments. 
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Table 3-1 Notoginseng selectively alters TLR-induced costimulatory molecule 

expression on DC2.4 cells. 

 
 CD40a CD86 
Unstimulated 192 ± 2 1224 ± 28 
LPS 1484 ± 61# 1630 ± 52# 
LPS + Notoginseng 932 ± 35#* 1295 ± 115#* 
CpG 611 ± 34# 1141 ± 33 
CpG + Notoginseng 512 ± 13#* 1408 ± 28#* 
Poly(I:C) 1627 ± 83# 1366 ± 49# 
Poly(I:C) + Notoginseng 1098 ± 40#* 929 ± 2#* 
 
  

DC2.4 cells were not stimulated or stimulated with LPS (1µg/ml), CpG (0.5µM) or 

poly(I:C) (12.5 µg/ml) and concomitantly treated with notoginseng (50 µg/ml) for 24 

hours. aMean Channel Fluorescence (MCF) was determined by flow cytometry. Data 

shown are representative of three independent experiments.  Error bars indicate mean ± 

SEM of five samples; #, p<0.05 for the comparison of unstimulated and TLR-activated 

cells; *, p<0.05 for the comparison of TLR-stimulated cells treated with notoginseng or 

untreated.  
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Figure 3-4. 
 

      A. 
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                                                                    CD40 
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                                                                    CD86 
 
 
 
 
 
 
 
 
 
 
Figure 3-4. Notoginseng inhibits the expression of costimulatory molecules on DC2.4 
cells following stimulation with TLR ligands. Cells were unstimulated (dashed line) or 
stimulated (black line) with LPS, CpG or poly(I:C) and concomitantly treated with 50 
µg/ml notoginseng (gray histogram) for 24 hours. Representative histograms 
demonstrating the cell surface expression of CD40 (A) and CD86 (B) on activated DC2.4 
cells were determined by FACS analysis. Data are representative of three independent 
experiments, each consisting of a minimum of three samples per treatment group. 
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but not with CpG stimulation (Fig. 3-4). Treatment of unstimulated DC2.4 cells with 

notoginseng did not affect CD40 expression; however, CD86 levels were decreased 

following exposure to the herbal extract alone (data not shown).  Notoginseng treatment 

decreased CD40 expression on DCs stimulated with all examined TLR ligands  (Fig. 3-

4). Likewise, CD86 expression was reduced on notoginseng-treated DC2.4 cells that were 

stimulated by LPS or poly(I:C). In contrast, there was an increase in CD86 expression in 

CpG-stimulated, notoginseng-treated samples.  

 

The effects of purified ginsenosides Rb1 and Rg1 on TNF-α and IL-6 production in LPS-

stimulated DC2.4 cells 

Ginsenosides are believed to be responsible for the biological activity of notoginseng. 

The notoginseng extract used in our studies is comprised of several ginsenosides, 

primarily Rb1 (35%) and Rg1 (34%). Therefore, the potential inhibitory effects of the 

purified ginsenosides Rb1 and Rg1 on LPS-induced TNF-α and IL-6 production were 

evaluated in DC2.4 cells. To more closely mimic the approximate concentrations of 

ginsenosides present in the whole extract, Rb1 and Rg1 were standardized to 

concentrations found in 50 µg/ml of the whole notoginseng extract. Following LPS 

activation of DC2.4 cells, Rg1 significantly inhibited both TNF-α and IL-6 production  

(Fig. 3-5A and 3-5B). In contrast, Rb1 only inhibited the production of IL-6 and was less 

potent when compared to Rg1. Neither ginsenoside reduced the production of either 

TNF-α or IL-6 as effectively as the whole notoginseng extract. Interestingly, combination 

of the purified Rb1 and Rg1 compounds did not significantly decrease the production of 

either cytokine. 
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Figure 3-5.  
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Figure 3-5.  The production of TNF-α  and IL-6 by DC2.4 cells is selectively 
suppressed by the whole notoginseng extract and purified ginsenosides.  LPS-
stimulated cells were treated with 50 µg/ml whole notoginseng extract (NG) or purified 
Rb1 and/or Rg1 ginsenosides. Supernatants were collected after 24 hours and assayed for 
TNF-α (A) and IL-6 (B) production by ELISA. Data represents mean ± SEM of 3 
samples. Statistically significant differences (p<0.05) between treatment groups are 
indicated by different letters while groups sharing letters are not significantly different.  
Data are representative of two separate experiments. 
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Notoginseng does not alter LPS-induced NFκB p65 activity in DC2.4 cells 

 
Translocation of NFκB to the nucleus is important for TLR ligand-induced 

inflammatory mediator production by dendritic cells. Given that notoginseng decreased 

the activation of DCs in our previous experiments and ginseng extracts have been shown 

to modulate NFκB activation in other immune cells, the effects of notoginseng on NFκB 

p65 nuclear levels were examined.  DC 2.4 cells were either unstimulated (0 min), or 

stimulated with LPS for 30 or 90 mins and concurrently treated with 50 µg/ml 

notoginseng. Samples were then harvested and the nuclear fraction evaluated for NFκB 

p65 binding activity. LPS stimulation of DC2.4 cells resulted in increased NFκB p65 

levels at both timepoints (data not shown). However, notoginseng did not significantly 

affect NFκB p65 activity in the cultured DCs.  

 

Discussion and conclusion 

Dendritic cells play an important role in the innate immune response to microbial 

pathogens (Granucci et al., 2005). Several studies have reported the effects of ginseng on 

various immune cell types; however, no information exists describing its effects on 

murine DCs. Previous studies on the effects of notoginseng on innate immunity have 

primarily focused on LPS-activated leukocytes. For this reason, we chose to examine the 

potential immunomodulatory effects of notoginseng on murine dendritic cells following 

stimulation with several TLR ligands, including LPS. Specifically, the effects of 

notoginseng on DC2.4 cells were examined following activation of TLR3, TLR4 and 

TLR9 by poly (I:C), LPS and CpG, respectively. The production of two critical 

inflammatory cytokines TNF-α and IL-6 were evaluated, as they are produced early 
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during DC activation. Moreover, TNF-α is involved in the maturation of DCs. Along 

with IL-6, TNF-α can rapidly induce expression of costimulatory molecules such as 

CD86 on DCs thereby enhancing their interactions with T cells (Fujii et al., 2004).  As 

LPS is a prototypical inflammatory stimulus, the effects of notoginseng were initially 

characterized following TLR4 activation. Notoginseng decreased the production of TNF-

α and IL-6 by LPS-activated DC2.4 cells. Furthermore, these effects were demonstrated 

to be time-and concentration-dependent. Both pretreatment and concomitant notoginseng 

treatment significantly reduced TNF-α production. The effects were evident even when 

notoginseng was removed from the media prior to LPS stimulation of the dendritic cells 

(data not shown). These results suggest that notoginseng may bind to an external receptor 

on the DC2.4 cells, may be taken up by the DCs, or potentially both. Additionally, the 

actions of notoginseng most likely occur via intracellular changes, and not by binding 

LPS and preventing it from activating its receptor, as its presence is not required for the 

inhibition of TNF-α. When DCs were exposed to notoginseng 8 hours after LPS 

stimulation, no significant inhibitory effects were identified on TNF-α production. These 

results suggest that notoginseng may affect early signaling events in DCs following LPS-

induced activation. 

As previously mentioned, activation of DC can occur by a variety of pathogens 

through different TLRs (Napolitani et al., 2005). In these experiments, LPS, CpG and 

Poly (I:C) were used to model stimulation of DCs by both bacterial and viral pathogens 

(Sioud, 2006). Notoginseng reduced the production of TNF-α by DC2.4 cells in response 

to each of the TLR ligands tested while IL-6 production was reduced following LPS and 

CpG, but not poly(I:C) stimulation. Because the TLR-induced production of both of these 
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pro-inflammatory cytokines was not completely abolished by notoginseng, DC function 

may not be significantly diminished. Thus, notoginseng may inhibit the inflammatory 

responsiveness of DCs without significantly affecting their ability to initiate adaptive 

immunity. If so, this medicinal herb might be expected to benefit individuals infected 

with microbial pathogens by limiting the production of inflammatory mediators such as 

TNF-α and IL-6 without affecting the generation of pathogen-specific adaptive 

immunity.  This possibility is consistent with a previous report demonstrating that 

notoginseng-treated mice were less susceptible to the ill effects of experimental sepsis, 

effects which the authors attributed to a decreased inflammatory response to infection 

(Ahn et al., 2006).  

The expression of TLRs can vary within different DC subpopulations (Krug et al., 

2001). Currently, no information exists on the levels of expression for different TLRs in 

DC2.4 cells. Further experiments are therefore needed to characterize the level of 

expression of TLR3, TLR4 and TLR9 in DC2.4 cells to permit better understanding of 

how notoginseng may affect their expression and function. Also, it is becoming widely 

accepted that pathogens will trigger multiple TLRs during the course of infection. Thus, 

additional experiments designed to evaluate the effects of notoginseng on DCs stimulated 

with multiple TLR ligands would be expected to greatly enhance our understanding of 

the innate immune responsiveness of DCs. 

Interactions between accessory/costimulatory molecules on DCs and their ligands 

expressed on T cells are critical for the full activation of T cells (Banchereau et al., 

2000a). Ligation of CD40 on DCs acts as a maturation signal, enhancing antigen 

presentation and the expression of other co-stimulatory molecules; while CD86 is 
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believed to be the most critical molecule for the amplification of T cell responses 

(Banchereau et al., 2000a; Fujii et al., 2004). Previous studies from our laboratory 

demonstrated that notoginseng reduced the LPS-induced expression of both CD40 and 

CD86 on RAW 264.7 cells (Rhule et al., 2006b). Similarly, CD86 and CD40 expression 

on LPS-activated DC2.4 cells was reduced using similar concentrations of notoginseng. 

Both molecules on DCs were also reduced by notoginseng treatment following poly(I:C) 

stimulation. In contrast, CD40 but not CD86 expression was reduced on DC 2.4 cells 

stimulated with CpG. Current studies in our laboratory are evaluating the functional 

significance of the notoginseng-induced changes in costimulatory molecule expression on 

DCs.  

Ginsenosides are unique to the ginseng species and are believed to be the biologically 

active components of notoginseng. Because of the wide variability in the types and 

concentrations of ginsenosides present in ginseng extracts, it is crucial to define the 

immunomodulatory potential of different ginsenosides.  In this study, the ginsenoside 

Rg1 inhibited the production of both TNF-α and IL-6, while Rb1 only affected the 

production of IL-6. Unexpectedly, when Rg1 was combined with Rb1, the inhibitory 

effect of Rg1 was lost. This result could be due to a number of factors including 

differential effects of Rb1 and Rg1 on cell membrane permeability, on the activation of 

disparate receptors and/or signal transduction pathways, or perhaps via the partial 

antagonism of Rg1 by Rb1 (Attele et al., 1999). These possibilities are consistent with a 

number of studies reporting that complex ginseng extracts can differentially affect 

immune cell function based on their specific ginsenoside profiles (Cho et al., 2002a; Cho 
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et al., 2001; Guermonprez et al., 2002; Joo et al., 2005).  Future studies will therefore be 

required to elucidate the complex nature of ginsenoside interactions in dendritic cells. 

The transcription factor NFκB plays an important role in the regulation of multiple 

signaling pathways that control the activation of many immune cells (Celec, 2004a; Glass 

and Ogawa, 2006a). TLR ligands activate NFκB proteins in DCs and subsequently affect 

their fate and function (Wang et al., 2007). Several studies with ginseng suggest that it 

may inhibit NFκB activation (Ahn et al., 2006; Chung et al., 1998; Keum et al., 2003b). 

In our studies, notoginseng did not affect NFκB p65 activation. Thus, it is likely that this 

herbal exerts its anti-inflammatory effects through other pathways such as MAPK and 

AP1, or through other NFκB family members such as RelB or cRel. Alternatively, 

because DC2.4 cells are an immortalized cell line that are not terminally differentiated, 

they may respond differently than primary DCs following exposure to notoginseng. This 

observation is consistent with recent studies in our laboratory in which notoginseng 

reduced NFκB p65 nuclear levels and activity in LPS-stimulated bone marrow-derived 

dendritic cells (manuscript in preparation). 

 In summary, this study demonstrates that notoginseng inhibits the production of 

TNF-α and selectively decreases IL-6 production by DCs following TLR activation. 

Similarly, notoginseng differentially affected the expression of the costimulatory 

molecules CD40 and CD86 on DCs following activation by different TLR ligands. 

Collectively, our results demonstrate that notoginseng can decrease the inflammatory 

responsiveness of DCs to bacterial or viral stimuli. Further studies are needed to examine 

directly if the notoginseng-induced decreases in cytokines and accessory molecules by 

DCs alters their ability to initiate T cell-dependent adaptive immunity. 
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An ethanolic extract of the medicinal herb, Panax notoginseng, inhibits innate but 

not adaptive immune function of murine dendritic cells. 
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Abstract 

     Dendritic cells (DCs) play an important role in facilitating the interaction between the 

innate and adaptive arms of the immune system. Many strategies have been used to 

manipulate DCs for therapeutic purposes. The medicinal herbal Panax notoginseng has 

been extensively studied in macrophages and other cell types for its innate immune 

effects. However, limited information exists on the effects of notoginseng on dendritic 

cells, and their ability to control the adaptive immune response. In this regard, the 

immunomodulatory effects of notoginseng were investigated using murine bone marrow-

derived dendritic cells (BMDCs).  BMDCs were stimulated with 1 µg/ml of LPS and 

either pre-treated or concurrently treated with 0-200 µg/ml notoginseng. LPS-induced 

production of the pro-inflammatory cytokines TNF-α, IL-1β, IL-6 and IL-12 was 

decreased by notoginseng. The cell surface expression of CD40 was reduced in cultures 

concurrently stimulated with LPS and treated with notoginseng, while CD86 and MHC II 

levels were decreased only following pre-treatment of BMDCs with notoginseng prior to 

LPS stimulation. Phagocytosis of FITC-ovalbumin was also reduced in notoginseng-

treated BMDCs. Functionally, T cell proliferation in response to notoginseng-treated, 

antigen (Ag)-loaded BMDCs was not significantly altered in vitro or in vivo. 

Mechanistically, notoginseng decreased BMDC activation independent of glucocorticoid 

receptor GCR activation; however, reduced nuclear levels of NFκB p65 were observed in 

notoginseng-treated BMDCs when compared to controls. Collectively, notoginseng 

reduced the production of inflammatory mediators by BMDCs without altering their 

ability to interact with CD4+ T cell in an antigen-specific manner. Therefore, our studies 

demonstrate that notoginseng alters the innate but not adaptive functions of DCs. 
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Introduction      

The induction of T cell-mediated immunity depends on the successful interaction of Ag-

bearing antigen presenting cells (APCs) with Ag-specific T cells (Di Nicola and Lemoli, 

2000). DCs are recognized as the primary APCs of the immune system. These cells also 

provide an integral link between innate and adaptive immunity (Granucci et al., 2003). 

They are important in the mediation of inflammation and have been implicated in 

numerous inflammatory diseases (Kuipers and Lambrecht, 2004; Sharma and Li, 2006b; 

Thomas et al., 1999).  Activated DCs produce various cytokines such as TNF-α, IL-1β, 

IL-6 and IL-12, which affect both microbial pathogens and leukocytes. These cytokines 

are also influential in the generation of several inflammatory conditions including 

atherosclerosis and rheumatoid arthritis (Andreakos et al., 2004a; Munz et al., 2005). 

Additional responses of DCs following activation include upregulation of adhesion and 

costimulatory molecules such as CD40 and CD86, and also major histocompatibilty 

complexes (MHC class I and II) on their cell surface (McLellan et al., 2000). These 

molecules are essential for productive Ag-specific interactions to occur between DCs and 

T cells (Fujji et al., 2004). 

     Many DC responses are regulated at the transcriptional level and, in particular, by the 

transcription factor, nuclear factor kappa B (NFκB) (West et al., 2004). When activated 

by classic inflammatory stimuli such as TNF-α and LPS, NFκB is released from the 

inhibitory protein IκB and translocates from the cytoplasm to the nucleus where it binds 

and induces transcription of specific target genes. This results in the upregulation of 

numerous immune and inflammatory genes. Pro-inflammatory mediator induction by 

NFκB activation can be affected by the glucocorticoid receptor (GCR) (Glass and 
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Ogawa, 2006b). Signaling through the GCR results in potent inhibition of the 

inflammatory response as well as attenuated DC function (Glass and Ogawa, 2006b; 

Valledor and Ricote, 2004).    

     Several natural and synthetic chemicals are capable of modulating the immune system 

(Patwardhan and Gautam, 2005). Currently, most compounds used to combat 

immunologic diseases are synthetic and biosynthetic pharmaceutical products. However, 

the use of herbal products is increasing, with consumer sales reaching previously unseen 

numbers (Paterson and Anderson, 2005). In spite of this increased usage, the effects of 

many of these herbals on the immune system have not been well characterized. As many 

of these herbals have the potential to modulate the immune system, it is important to 

understand their mechanisms of action and potential immunotoxic effects.  

     Ginseng has been used as a medicinal for over 2000 years in Asian countries and is 

now becoming increasingly popular in Western countries such as the United States (Sato 

and Miyata, 2000). Numerous studies have shown that ginseng possesses 

immunomodulatory properties (Hofseth and Wargovich, 2007; Jie et al., 1984; Liou et 

al., 2005). These biological effects are most likely mediated by ginsenosides, the 

purported therapeutic phytochemicals in ginseng (Dong et al., 2003a). There are thirteen 

known species of ginseng with the Panax ginseng, Panax quinquefolium and Panax 

notoginseng being the three most popular medicinal species. Of these three, Panax 

notoginseng possesses the highest concentration of ginsenosides (Harkey et al., 2001b). 

Several studies exist describing the effects of Panax notoginseng and ginseng derivatives 

on various immune cell types. These studies primarily involve the anti-inflammatory 

effects of notoginseng, specifically its reduction of cytokine production and inflammatory 
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enzymes such as iNOS and COX-2 (Park et al., 2005).  Currently, no information exists 

regarding the effects of notoginseng on the innate function of murine DCs or their 

capacity to interact with T cells in an Ag-specific manner.  

      To address this deficiency, we have examined the immunomodulatory effects of 

Panax notoginseng in murine bone marrow-derived dendritic cells (BMDCs). BMDCs 

were stimulated with LPS and concurrently treated with notoginseng.  Production of the 

pro-inflammatory cytokines TNF-α, IL-1β, IL-6 and IL-12 and expression of the cell 

surface molecules CD40, CD86 and MHCII were analyzed following notoginseng 

exposure. The effects of notoginseng on antigen uptake and Ag-specific activation of T 

cells were also evaluated. Studies have suggested that alteration of NFκB activation in 

ginseng-treated macrophages may be responsible for decreased production of 

inflammatory mediators (Oh et al., 2004a; Park et al., 2005). Therefore, the effects of 

notoginseng on NFκB activation were investigated in BMDCs. Additionally, the GCR 

blocker RU486 (mifepristone) was utilized to determine whether notoginseng’s activity 

occurred through GCR-mediated mechanisms. Our results demonstrate that notoginseng 

inhibits the innate immune responsiveness of DCs without altering their antigen-specific 

adaptive immune function.  

 

Materials and methods  

Mice 

C57BL/6 mice aged 6-12 weeks old were bred and maintained in the animal research 

facilities at the University of Montana. Mice were housed under specific pathogen-free 

conditions and maintained on 12-hour dark/light cycles. Standard laboratory food and 
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water were provided ad libitum. All protocols for the use of animals were approved by 

the University of Montana Institutional Animal Care and Use Committee. 

 

BMDCs 

Bone marrow cells (BMCs) were collected from the femur and tibia of C57BL/6 mice for 

in vitro use, by flushing out the bone marrow with cRPMI using a 30-gauge needle. 

BMCs were then layered on a density gradient using lympholyte reagent (Cedarlane 

laboratories limited, Ontario, Canada) and centrifuged at 800 X g for 20 minutes. The 

lymphocyte layer was collected and washed with cRPMI. To generate myeloid-derived 

BMDCs, BMCs were grown in cRPMI with 30 ng/ml granulocyte-macrophage colony 

stimulating factor (GM-CSF) (Leinco, St Louis, Missouri) at 1X10 6 cells per ml in T75 

flasks. Media and growth factor were removed and replenished on days 3 and 5. Cells 

were harvested after 7 days and DCs purified using (90% CD11c+) CD11c-APC 

antibodies and anti-APC Miltenyi magnetic beads (Miltenyi Biotec, Auburn, CA) 

according to the manufacturer’s instructions. 

 
 Chemicals 

Noto-GTM extracts from the plant Panax notoginseng (Burk.) F.H. Chen ex C.Y. Wu & 

K.M. Feng were kindly supplied by Technical Sourcing International, Inc. (TSI, 

Missoula, MT).  Notoginseng was extracted from the root of the plant using ethanol and 

standardized to contain Rb1 and Rg1 ginsenosides at 35 and 34% of the whole extract, 

respectively. Quantification of Rb1 and Rg1 in the notoginseng extract was determined 

by high-performance liquid chromatography analysis by TSI. Certification of analyses 

was approved by Xia Ronglong (QA manager, TSI). Escherichia coli (E. coli) and 
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Salmonella enterica were undetectable in the notoginseng preparation (unpublished data). 

The extract was dissolved in complete media (see below) and subsequently sterile-filtered 

through a 0.22 µM Millipore membrane. Lipopolysaccharide (LPS) from E. coli 

(055:B5); whole ovalbumin, RU486 and dexamethasone (DEX) were obtained from 

Sigma-Aldrich. Custom synthesized OVA323-339 peptide was purchased from Mimotopes, 

San Diego, CA. 

 

 Cell Activation and Treatment 

BMDCs (1 X 106 cells per well) were stimulated with 1 µg/ml LPS and treated with 0, 

100, 150 or 200 µg/ml notoginseng for 24 hrs at 37 0C and 5% CO2 in 6-well plates. 

After 24 hrs, cells were harvested for RT-PCR and FACS analyses and supernatants were 

collected for evaluation by ELISA.  BMDC treatment with the GCR antagonist, RU486, 

and the GCR agonist, DEX, as described in previously published conditions (Pan et al., 

2001). Briefly, RU486 (1 µM) was added to BMDCs 15 minutes prior to notoginseng or 

DEX (100 nM) treatment and stimulation with LPS. DMSO (less than 0.1%) was added 

to unstimulated and LPS-stimulated samples to serve as controls in these experiments, as 

DEX and RU486 were dissolved in DMSO. For BMDC antigen processing and 

presentation experiments, notoginseng was removed from the media after 24 hrs and 

replaced with fresh media. Cells were then pulsed with 100 µg/ml whole OVA or 50 

µg/ml OVA323-339 peptide for 24 hrs. BMDCs were subsequently harvested, counted and 

prepared for assay. The viability of BMDCs used in all experiments was greater than 

90% as determined by Trypan blue exclusion. 
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Cytokine Assays 

Levels of TNF-α, IL-1β, IL-2, IL-6 and IL-12 in the supernatants were measured by 

enzyme-linked immunosorbent assay (ELISA). Samples were analyzed per the 

manufacturer’s instructions using mouse cytokine-specific BD OptEIA ELISA kits (BD 

PharMingen, San Diego, CA). 

 

 Flow Cytometry 

 Detection of accessory molecule expression on BMDCs by fluorescent activated cell 

sorting (FACS) analysis was performed as previously described (Shepherd et al., 2001).  

Briefly, BMDCs were harvested and washed with PAB (1% bovine serum albumin and 

0.1% sodium azide in PBS). Cells were blocked with 30 µg of purified rat and/or hamster 

IgG (Jackson ImmunoResearch, West Grove, PA) for 10 minutes to eliminate non-

specific staining. Optimal concentrations of flurochrome-conjugated monoclonal 

antibodies were used to stain cells for an additional 10 minutes. The antibodies used in 

these experiments were CD86-APC, CD40-PE, MHCII-PE, CD4-PE, CD11c-APC, 

CD44-PB, CD62L-PE and their corresponding isotype controls (BDPharmingen, San 

Diego, CA).  One to five hundred thousand viable cells per treatment (as determined by 

light scatter profiles and propidium iodide staining) were analyzed using a BD FACSAria 

flow cytometer and FACSDiva software (BD Biosciences, San Jose, CA). 

 

NFκB Activity Assay 

 BMDCs (1 X 106 cells per well) were stimulated with 1 µg/ml LPS and treated with 150 

µg/ml notoginseng for 0, 1 or 2 hrs at 37 0C and 5% CO2 in 6-well plates. At each time-
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point, cells were harvested, lysed and proteins extracted using the ActiveMotif nuclear 

lysis kit (Active Motif, Carlsbad, CA). The protein content of the nuclear extract was 

measured using a BCA protein assay kit (Pierce, Rockford, IL). Nuclear protein (2.5 

µg/ml per well) was then added to the Active Motif TransAM NFκB p65 kit (Active 

Motif, Carlsbad, CA) and assayed according to the manufacturer’s specifications. Briefly, 

2.5 µg of nuclear protein was incubated in a 96-well plate containing the NFκB 

consensus site (5’-GGGACTTTCC-3’) for 1 hour. This was followed by a 1-hour 

incubation with a primary antibody that recognizes NFκB p65 bound to target DNA. The 

peroxidase-conjugated secondary antibody was added for an hour, after which samples 

were developed and analyzed by spectrophotometery.   

 

Immunoblotting 

In some experiments, nuclear extracts from the treated BMDCs were also assayed for 

NFκB p65 protein by Western blotting. For these assays, 10 µg of protein was loaded 

onto a SDS-PAGE gel and blotted onto 0.2 µm polyvinylidene difluoride transfer 

membrane (Biorad, Hercules, CA). Membranes were blocked using 10% nonfat dried 

milk in PBS with 0.05% Tween (PBST), then incubated overnight at 40C with either 

antibodies (Santa Cruz Biotechnology, Santa Cruz, CA) to NFκB p65 antibody (1:500) or 

β-actin (1:4000). The membrane was washed and incubated with either peroxidase-

conjugated anti-rabbit IgG (Jackson Immunoresearch, 1:1000) or anti-mouse IgG 

(Southern Biotechnologies). Membranes were exposed for 1-5 mins and processed using 

Fuji film imaging software. 
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In vitro Antigen Presentation Assay 

BMDCs were untreated or pretreated with notoginseng for 24 hours, washed to remove 

notoginseng, then loaded with Ag (whole ovalbumin at 100 µg/ml or ova peptide at 50 

µg/ml) overnight. T cells were isolated from the spleens of OT-II T cell receptor 

transgenic mice and purified using CD4-PE antibodies (BD Pharmingen, San Diego, CA) 

and anti-PE beads (Miltenyi Biotec, San Diego, CA). T cells (2 X 105) were co-cultured 

with BMDCs  (2 X 105) cells in 96 well plates. After 72 hours, cells were pulsed with 

1µCi  [3H] thymidine (Amersham, Piscataway, NJ) for 24 hours. Cells were harvested and  

[3H] thymidine incorporation measured via liquid scintillation.  

 

Adoptive Transfer of Ag-loaded donor DCs and Ag-specific T cells 

The protocol for adoptive transfer was modified from a previously described method 

(Shepherd et al., 2000). Briefly, BMDCs were exposed to 100 µg/ml of notoginseng for 

24 hours. Cells were treated with 50 µg/ml of OVA peptide for an additional 24 hours.  

Splenic OTII CD4+ T cells were harvested from OT II/Thy1.1 mice and enriched using 

Miltenyi magnetic beads. OT II T cells (2 X 106 per mouse) were resuspended in HBSS 

and injected iv into age- and sex-matched, CD45.1 congenic host mice on day -1 relative 

to immunization. Host-mice were immunized on day 0 with ova peptide-loaded BMDCs 

(1 X 106) via rear footpad injection. On day 4 post-immunization, popliteal lymph node 

cells were harvested from the host mice and analyzed by flow cytometry. Brachial lymph 

node cells were also harvested and evaluated as unactivated controls. Subsequent analysis 

of the Ag-loaded BMDCs and Ag-specific T cells was based on the phenotypic 

expression of CD45.2+/CD11c+ donor dendritic cells and CD4+/Thy1.1+ OT II T cells, 
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respectively. Cells from the host were excluded based on their expression of CD45.1 and 

Thy 1.2 cell surface proteins. 

 

Statistics 
All statistical analyses were performed using GraphPad Prism 4.0a for the Macintosh 

(GraphPad Software, San Diego, CA).  Data represents the mean ± SEM of 3 samples for 

3 independent experiments unless otherwise stated. Differences between treatment groups 

were analyzed by Student’s t-test. Data sets with multiple comparisons were evaluated by 

one-way analysis of variance (ANOVA) with Dunnett's test.  Values of p < 0.05 were 

determined to be significant. 

 

Results 
 
Notoginseng suppresses the LPS-induced production of pro-inflammatory cytokines by 

BMDCs  

Cytokines are important mediators in the orchestration of an immune response. To 

investigate the effects of notoginseng on the production of cytokines by dendritic cells, 

BMDC were stimulated with 1 µg/ml LPS and concurrently treated with notoginseng. As 

shown in Fig. 4-1, activation of BMDCs with LPS resulted in significant increases in the 

production of TNF-α, IL-1β, IL-6 and IL-12, when compared to unstimulated controls.   

At the highest concentration of notoginseng tested (200 µg/ml), the LPS-induced 

production of IL-1β, IL-6 and IL-12 was decreased by approximately 90%. Notoginseng 

also reduced TNF-α production by BMDCs although to a lesser degree than observed for 

the other pro-inflammatory cytokines. No cytotoxicity was observed at any of the 

concentrations of notoginseng used in our study as assessed by Trypan blue exclusion 
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Figure 4-1.      

                                             
 A.                                             B. 

 
C.                                                  D. 

  
 

 

 

 

 

 

Figure 4-1. Notoginseng modulates LPS-induced cytokine production by BMDC. 
Cells were stimulated with LPS (1 µg/ml) and concomitantly treated with 0, 100 or 200 
µg/ml of notoginseng. Supernatants were collected after 24 hours and assayed for TNF-α, 
IL-1β, IL-6 and IL-12 levels by ELISA. Data represent mean ± SEM of 3 samples. # 
Indicates significant differences between stimulated and unstimulated cells (p < 0.05), * 
indicates significant differences between the LPS-stimulated, control- and notoginseng-
treated samples (p < 0.05). Data are representative of 3 independent experiments. 
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(data not shown). Also, notoginseng did not significantly affect cell recoveries of 

BMDCs when compared to control treated samples. 

 

 BMDC expression of key accessory molecules is affected by notoginseng  

 To determine the effect of notoginseng on accessory molecule expression on DCs, 

BMDCs were stimulated with LPS and concurrently treated with 200 µg/ml of 

notoginseng for 24 hours.  Activation markers on BMDCs were analyzed by flow 

cytometry.  A significant increase in CD40, CD86 and MHC II cell surface expression 

was observed following LPS stimulation of BMDCs  (Fig. 4-2 and Table 4-1). CD40 

expression was reduced by 58% on BMDCs treated concurrently with notoginseng and 

LPS while CD86 and MHC II were unaffected by the herbal treatment. In some 

experiments, cells were pretreated with notoginseng for 20 hrs prior to LPS stimulation to 

determine if notoginseng exposure prior to activation differentially affected cell surface 

molecule expression. Pretreatment of BMDCs resulted in an even greater reduction in the 

expression of CD40, while also significantly decreasing CD86 and MHCII expression. 

 
Reduced uptake of FITC-conjugated whole ovalbumin by notoginseng-treated BMDCs 

To assess whether notoginseng reduced antigen uptake, a primary function of dendritic 

cells, BMDCs were incubated with FITC-conjugated whole ovalbumin (FITC-ova). 

Fluorescence intensity was used to assess the phagocytosis of FITC-ova by BMDCs via 

both flow cytometry and fluorescence microscopy analyses (Fig. 4-3). A decrease in 

fluorescence intensity was observed in both the 50 and 100 µg/ml notoginseng-treated 

groups when compared to controls as determined by light microscopy (Fig. 4-3A). This 

effect was quantitatively confirmed by flow cytometry, as a 3-fold reduction in mean 
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Table 4-1. Notoginseng differentially affects the expression of LPS-induced 

accessory molecules on BMDCs. 

 
 
 

CD40 
MCFb 

CD86 
MCF 
 

Percent MHC II+c 
 

Unstimulated a 
 

683 ± 12 5991 ± 105 
 

17 ± 1.7 
 

LPS 
 

8985 ± 1305#d 
 

11280 ± 488 # 

 
27 ± 0.8 # 

 
LPS + NG 
 

3750 ± 172#* 
 

10210 ± 386 # 

 
24 ± 1.0 # 

 
LPS + NG  
PRE-TREAT 

2266 ± 105#* 
 

8872± 384#* 11 ±0.6#* 

 
 
a BMDC were either unstimulated, stimulated with LPS only, stimulated with LPS and 

concomitantly treated with notoginseng (200 µg/ml), or pre-treated with notoginseng for 

20 hours prior to LPS stimulation.  Cells were harvested 24 hour following stimulation 

with LPS. 

b Mean Channel Fluorescence (MCF) as determined by flow cytometry 

c Percentage of BMDCs expressing high levels of MHC II as determined by flow 

cytometry. 

d Data shown are representative of three independent experiments.  Error bars indicate 

mean ± SEM of 3 samples; #, p < 0.05 for the comparison of unstimulated and LPS-

activated cells; *, p < 0.05 for the comparison of LPS-stimulated cells to notoginseng-

treated, LP-stimulated cells.
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Figure 4-2. 

 
    
                                            CD40                          CD86                      MHC II high 
LPS + Unstimulated 

 LPS + NG                

LPS + NG Pretreat  

                                 
 
 
 
 
 
 
 
Figure 4-2.  Effects of notoginseng on LPS-induced expression of accessory 
molecules on BMDCs. Cells were treated with notoginseng (200 µg/ml) either 
concurrently or 20 hours prior to LPS stimulation. Cells were stimulated with LPS for 24 
hours and CD40, CD86 and MHC II expression was assessed by flow cytometry. The 
broken lines represent unstained controls; solid lines represent LPS-stimulated samples, 
and dotted lines represent LPS-stimulated, notoginseng treated samples. Data are 
representative of 2 separate experiments with 3 samples per treatment group. 
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Figure 4-3. 
 
                    Ova                          Ova + 50NG             Ova + 100NG 
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Figure 4-3.  Notoginseng reduces FITC-conjugated ovalbumin uptake by BMDCs. 
Cells were incubated with FITC-conjugated whole ovalbumin (FITC-Ova) or FITC-Ova 
and notoginseng (NG) 200 µg/ml. BMDCs were harvested and fluorescence intensity was 
visualized by fluorescence microscopy (A) and quantified by flow cytometry (B). In Fig. 
B, the dotted lines represent non-ova-exposed cells; solid lines represent ova exposed 
cells with or without notoginseng treatment. Data represents mean ± SEM of 3 samples. * 
indicates significant differences between LPS-stimulated controls and LPS-stimulated, 
notoginseng-treated samples (p < 0.05). Data are representative of 2 separate 
experiments. 

2067 ±  161 872 ±  50 663 ±  53 
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channel fluorescence intensity was detected between controls and cells concurrently 

exposed to 100 µg/ml notoginseng and FITC-ova (Fig. 4-3B).  

 
NFκB activation in BMDCs is decreased by notoginseng treatment 

NFκB activation plays an important role in regulating the expression of many 

inflammatory molecules. To determine if the effects of notoginseng might be mediated 

through decreased NFκB activation, BMDCs were stimulated with LPS or LPS and 200 

µg/ml of notoginseng for 0-2 hrs and NFκB p65 activity was assessed (Fig. 4-4). Nuclear 

extracts were evaluated to determine whether notoginseng altered NFκB p65-binding 

activity to an oligonucleotide containing the NFκB consensus-binding site. A 2.4-fold 

increase in NFκB binding activity was detected in the LPS-stimulated samples when 

compared to the unstimulated controls (Fig. 4-4A). Notoginseng treatment significantly 

decreased NFκB p65 binding activity in LPS-stimulated BMDCs. Reduced levels of 

nuclear NFκB p65 protein were also observed in notoginseng-treated BMDCs as 

determined by Western blotting (Fig. 4-4B). 

 

Notoginseng does not inhibit BMDC activity via the glucocorticoid receptor 

Previous reports have demonstrated binding and activation of the GCR by ginsenosides 

(Chung et al., 1998; Kim et al., 1997).  Additionally, GCR activation leads to decreased 

inflammatory mediator production by DCs, similar to the effects of notoginseng. 

Therefore, the role of GCR activation was assessed in notoginseng-treated BMDCs. To 

determine whether notoginseng acts through GCR activation, LPS-stimulated BMDCs  
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Figure 4-4. 

 
A. 
 

 
 
 
B. 
 
 
 
 
 
 
 
  
 
 
 
Figure 4-4. NFκB activation is reduced by notoginseng treatment. BMDCs were 
stimulated with LPS (1 µg/ml) and concomitantly treated with notoginseng (150 µg/ml). 
Cells were harvested after 2hrs and nuclear proteins were isolated. NFκB p65 activation 
was measured using the TransAM activity ELISA (A), and nuclear protein levels were 
determined using by Western blotting (B). # Indicates significant differences between 
LPS-stimulated and unstimulated cells (p < 0.05); * indicates significant differences 
between LPS-stimulated controls and LPS-stimulated, notoginseng-treated samples (p < 
0.05). Data are representative of 3 separate experiments. 

No LPS     LPS      LPS NG     LPS     LPS NG 

     0hr                 1 hr                        2 hrs 

NFκB 

β-actin 
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Figure 4-5. 
 
A.                                                    B. 

     
 
C. 

 
 
 
Figure 4-5.  The effects of notoginseng on BMDCs are not mediated through the 
GCR. BMDCs were stimulated with LPS (1 µg/ml) and concomitantly treated with 
notoginseng (200 µg/ml) or dexamethasone. RU486 was added to some samples 15 
minutes before addition of LPS, notoginseng or dexamethasone. Samples were harvested 
at 24 hours and TNF-α and IL-6 levels were measured by ELISA. CD40 expression was 
determined by flow cytometry. Data represents mean ± SEM of 3 samples. # Indicates 
significant differences between LPS-stimulated and unstimulated cells (p < 0.05); * 
indicates significant differences between LPS-stimulated controls and LPS-stimulated, 
notoginseng-treated samples (p < 0.05). Data are representative of 2 separate 
experiments. 
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were either treated with 200 µg/ml of notoginseng, or 200 µg/ml of notoginseng and 

RU486. LPS-stimulated BMDCs were also treated with DEX and RU486 as comparative 

control as these compounds have been widely used to investigate whether the effects of a 

particular agent occurs via GCR binding (Kim et al., 2001; Pan et al., 2001).  As 

expected, DEX significantly reduced BMDC production of TNF-α and IL-6, as well as 

their expression of CD40, with effects that were blocked with the co-administration of 

RU486 (Fig. 4-5). Notoginseng also significantly reduced TNF-α and IL-6 levels and 

CD40 expression. In contrast to DEX, however, RU486 did not reduce the inhibitory 

effects of notoginseng, as would be predicted if notoginseng acted through the GCR (Fig 

4-5).  

 

The effects of notoginseng treated BMDCs on antigen-specific T cell proliferation in vitro 

A primary function of a DC is to uptake antigen and present it to T cells, culminating in 

the generation of a successful adaptive immune response. To investigate whether 

notoginseng affected Ag processing and presentation by DC, BMDC were treated with 

200 µg/ml notoginseng for 24 hours and exposed to Ag in the form of ova peptide (OP) 

or whole ovalbumin (WO). Antigen-loaded BMDC were then cultured with ova-specific 

OTII T cells and T cell proliferation evaluated via [3H]-thymidine incorporation. A 3-fold 

and 9-fold increase in T cell proliferation was observed using OP- and WO- loaded 

BMDCs, respectively (Fig. 4-6A). While a trend towards decreased T cell proliferation 

was determined for cultures containing Ag-exposed, notoginseng-treated BMDCs, there 

were no significant effects when compared to controls. There was also no difference in 

IL-2 production between control and notoginseng-treated groups (Fig. 4-6B).  
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Figure 4-6. 
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Figure 4-6.  APC function of BMDCs is not affected by notoginseng in vitro. DCs 
were treated with notoginseng (200 µg/ml) for 24 hours after which the herbal extract 
was removed from the cultures. BMDCs were then stimulated with 100 µg/ml of whole 
ovalbumin (WO) or ova peptide (OP) for an additional 24 hours. BMDCs were harvested 
and co-cultured with CD4+ T cells from OT II mice. After 3 days, T cell clonal 
expansion was measured as described in materials and methods (A) and supernatants 
analyzed for IL-2 production by ELISA (B). # Indicates significant differences between 
antigen exposed and unstimulated cells; * indicates significant differences between 
antigen-loaded controls and antigen loaded, notoginseng-treated samples (p < 0.05). Data 
are representative of 2 separate experiments; 3 samples per group. 
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 Notoginseng does not affect BMDC migration or APC function in vivo 
 
Immature DCs are capable of antigen capture in the periphery and subsequent migration 

to draining lymphatic tissue (Banchereau et al., 2000c). In lymph nodes, DCs activate 

antigen-specific T cells, thereby initiating T cell mediated immunity. To test the ability of 

notoginseng-treated DC to migrate to lymph nodes and interact with antigen specific T 

cells in vivo, donor BMDCs were treated with 200 µg/ml of notoginseng for 24 hours, 

and susequently loaded with ova peptide. Congenic host mice that had been adoptively 

transferred with ova-specific CD4+ T cells were immunized with ova-loaded BMDCs.  

Mice were harvested 4 days following BMDC immunization and both the proximal and 

distal lymph nodes were removed for evaluation of BMDC-T cell interactions. 

Differences in the expression of cell surface molecules on donor and host mice, allowed 

for the segregation of donor DC (CD11c+/CD45.2+) and T cells (CD4+/Thy1.1+) from 

cells from the host mouse (CD45.1+/Thy 1.2+). Therefore, the effects of notoginseng 

treatment on BMDCs fate and function in vivo could be exclusively evaluated. Ag-loaded 

BMDCs increased percentages and numbers of OT II T cells in the draining popliteal 

lymph nodes of host mice when compared to the distal brachial lymph nodes which 

served as unactivated controls (data not shown).  No significant differences were 

observed in the percentage or number of CD11c+ donor DCs present in the popliteal 

lymph nodes between control DCs and notoginseng-treated DCs (Figs. 4-7A and 4-7B). 

Additionally, there were no significant differences in the clonal expansion of 

OTII/Thy1.1 T cells in mice receiving control-treated and notoginseng-treated BMDCs 

(Fig. 4-7 C/D). Furthermore, no differences were observed in the activation of ova-

specific  
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Figure 4-7. 
 
A.                                                                 B.                                                            

               
C.                                                                  D. 

               
 
 
 
 
 
 
 
Figure 4-7. Notoginseng does not alter the ability of BMDCs to migrate to lymph 
nodes and activate T cells in vivo. CD4+ T cells from OTII/Thy1.1 were adoptively 
transferred into congenic CD45.1 host mice, 24 hours before immunization with ova-
loaded BMDCs (OP) that were untreated (-) or exposed to notoginseng (NG) (200 
µg/ml).  On day 4 post-immunization, popliteal lymph node cells were harvested from 
host mice and analyzed by flow cytometry. Analysis was based on differences in 
phenotypic expression of cell surface molecules between donor DCs (CD45.2/CD11c) 
(A/B) and donor T cells (CD4/Thy1.1) (C/D) and cells from the host mice (CD45.1/Thy 
1.2). Data are representative of 2 separate experiments, each with 6 animals per treatment 
group.  
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T cells between controls and notoginseng-treated cells as defined by the expression of the 

activation markers, CD62L and CD44, on the OT II/Thy 1.1 T cells (data not shown). 

 

Discussion and conclusion 

       DCs provide critical functions for the effective defense against pathogens via both 

innate and adaptive immune responses. In this study we demonstrated that notoginseng 

decreased the level of pro-inflammatory cytokine production and cell surface molecule 

expression by dendritic cells without altering their T cell stimulatory capabilities.   

     Cytokines are soluble mediators that are involved in many biological processes in 

particular inflammation. TNF-α is a preformed cytokine and is released immediately 

after activation of phagocytes (Abass et al., 1994). In many inflammatory disease 

processes such as arthritis, TNF-α is described as being the apex of the pro-inflammatory 

cascade (Andreakos et al., 2004a). Inhibiting TNF-α has been shown to decrease 

production of other cytokines including IL-1β, IL-6 and even TNF-α itself (Abass et al., 

1994).  Notoginseng reduced the secretion of TNF-α by BMDCs, but displayed an even 

greater inhibition of IL-1β, IL-6 and IL-12. IL-10 production was also inhibited by 

notoginseng (data not shown). These data are consistent with previous results from our 

laboratory demonstrating that notoginseng significantly attenuates the production of 

TNF-α and IL-6 by LPS-stimulated murine macrophages (Rhule et al., 2006b).  DCs 

have increasingly been shown to participate in inflammatory disease processes. As such, 

inhibition of pro-inflammatory cytokines suggests a plausible mechanism for the 

described anti-inflammatory effects of notoginseng (Jin et al., 2007; Li and Chu, 1999; 

Wang et al., 2006b).   
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  Accessory molecule expression is necessary for full T cell activation by DCs. The 

interaction of CD40 on DCs with CD154 (CD40L) on T cells is crucial in sustaining a 

productive T cell response (Banchereau et al., 2000b). Additionally, CD40 is involved in 

the amplification and regulation of inflammatory responses (van Kooten and Banchereau, 

2000). In our experiments, CD40 expression was decreased following notoginseng 

treatment of BMDCs, while expression of CD86 and MHC II expression was less 

sensitive. These results suggest that notoginseng may inhibit the expression of cell 

surface molecules via different mechanisms, but it is particularly effective in decreasing 

CD40 expression. One possible explanation for the selective effects of notoginseng on 

CD40 is through decreased activation of NFκB, especially the RelB. Interestingly, RelB 

knockout mice lack CD40 expression, yet express normal levels of CD86 and MHC II 

(Martin et al., 2003; O'Sullivan and Thomas, 2003). It is therefore plausible that 

notoginseng alters CD40 expression on DCs via modulation of RelB; however, this 

possibility remains to be tested.  

     Notoginseng significantly reduced BMDC cytokine production and expression of 

CD40, effects that can promote T cell tolerance (O'Sullivan and Thomas, 2003). There 

was also a decrease in phagocytosis, which is consistent with a report on the effects of 

metabolized ginsenosides on human DCs by Takei and colleagues (Takei et al., 2004). 

Several reports have described the inhibitory effects of ginseng on NFκB p65 activity 

(Ahn et al., 2006; Oh et al., 2004a; Park et al., 2005).  As many DC functions are 

mediated through NFκB p65 signaling, the effects of notoginseng on this protein were 

examined in BMDCs. In our study, notoginseng significantly decreased NFκB p65 

nuclear levels and activity in BMDCs. Recent studies suggest that the RelA subunit of 
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NFκB is crucial for the expression of inflammatory cytokine genes, but not T cell 

stimulatory genes such as CD86 and MHC II (Wang et al., 2007). Alternatively, 

notoginseng could be selectively affecting different NFκB components such as RelB, or 

other signaling pathways such as MAP kinase and AP-1 as recently demonstrated in 

astroglial cells (Jung et al., 2006). Additional experiments focused on defining the effects 

of notoginseng on intracellular signaling events are therefore warranted. 

     Glucocorticoids are hormones that are naturally released during the initiation and 

regulation of an immune response. These hormones activate the GCR thereby reducing 

the synthesis of inflammatory mediators via repression of gene transcription (Smoak and 

Cidlowski, 2004). Previous studies in FTO2B cells, a rat hepatoma-derived cell line, 

showed that the ginsenoside Rg1, a component of ginseng, can effectively activate the 

glucocorticoid receptor (Chung et al., 1998; Lee et al., 1997). In our study, RU486 

completely inhibited the effects of DEX on CD40. However, the effects on TNF-α and 

IL-6 were not completely reversed. Blockade of the GCR with the antagonist RU486 

failed to reduce the inhibitory effects of notoginseng on BMDCs. These results are 

consistent with a previous study showing that ginseng does not mediate its effects via 

GCR activation, but reverses the down-regulation of the activated GCR (Ling et al., 

2005). Additionally, as we previously reported that, individual ginsenosides such as Rg1 

can differentially affect APCs in the presence of other ginsenosides such as Rb1 (Rhule et 

al., 2006b). 

   Alternatively, notoginseng may indirectly affect GCR activity by binding to locations 

other than the active site. If binding of notoginseng did not occur via the active site of the 

GCR in BMDCs, then RU486 would not affect its activity in BMDCs. Unexpectedly, the 
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combined treatment of LPS-stimulated BMDCs with RU486 and notoginseng resulted in 

further decreases in the expression of CD40. While we have not directly studied what 

caused this effect, as RU486 can also block glucocortiocoid and progesterone receptor-

binding sites, there may be more notoginseng available for activity at other complexes. 

This may have led to more unbound notoginseng being available to interact with other 

receptors responsible for modulating the immune system, resulting in the more 

pronounced decrease of CD40 observed with the addition of both RU486/notoginseng.  

     DCs are the primary APCs involved in the initiation of T cell activation. Notoginseng 

treatment reduced cytokine production, phagocytosis and costimulatory molecule 

expression by BMDCs. As alterations of these DC functions can directly affect their 

activation of T cells, we examined the effects of notoginseng on APC activity. 

Notoginseng treatment did not affect the ability of BMDCs to stimulate antigen specific 

T cell proliferation in vitro and in vivo. There were also no effects on activation molecule 

expression on T cells interacting with notoginseng-treated BMDCs. Our results are 

inconsistent with other studies suggesting that notoginseng and its components possess 

adjuvant properties (Qin et al., 2006; Sun et al., 2005; Yang et al., 2007a). This 

discrepancy could be due to several factors including the ratios of ginsenosides in our 

notoginseng extract being different from those used in other experiments. This 

explanation is in line with previous experiments by our laboratory demonstrating that 

ginsenoside Rb1 and Rg1 can have different properties in regards to proinflammatory 

cytokine inhibition induced by LPS in RAW264.7 and DC2.4 cells (Rhule et al., 

2006b)(submitted article). Additionally, in a study by Cho et al ginsenosides were shown 
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to differentially regulate lymphocyte proliferation in vitro (Cho et al., 2002b). This 

demonstrates the potential for different ginsenosides to possess varied effects. 

     DCs in vivo had decreased CD40 expression at the end of the 4 day incubation period 

with T cells, while CD86 and MHCII were expressed at similar levels on the untreated 

and notoginseng-treated DCs (data not shown). Importantly, the decreased CD40 

expression on DCs clearly had no effect on the activation of T cells. This is significant, as 

interaction of CD40 on APCs with CD40L on T cells is necessary for full T cell 

activation (Fujji et al., 2004). Our experiments therefore raise questions of how much 

CD40 expression is necessary to fully activate T cells and whether decreased expression 

leads to immunosuppression. There are several studies describing the effects of Ginseng 

on T cell proliferation and reduced function/activation of APCs such as macrophages 

(Cho et al., 2002b; Martin et al., 2003; Oh et al., 2004a; Rhule et al., 2006a). However, 

the effects of notoginseng on the interactions of APCs with antigen-specific T cells have 

not been determined. Our experiments provide novel information, demonstrating that 

although innate functions of DCs are decreased by notoginseng, adaptive immune 

functions are unaffected. 

     There is continued interest in the effects of natural products due to their therapeutic 

potential. Our study demonstrates that notoginseng treatment of BMDC can inhibit 

specific mediators of inflammation, including pro-inflammatory cytokine production and 

CD40 expression, to a similar degree as dexamethasone, without the immunosuppressive 

effects on T cell mediated immunity that is normally associated with this drug. Taken 

together, our research suggests that notoginseng possesses anti-inflammatory effects 

without significantly affecting Ag-specific interactions between DCs and T cells. Thus, 
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notoginseng may be an effective natural treatment for inflammatory diseases such as 

arthritis, inflammatory bowel syndrome and asthma. 
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CHAPTER 5. 
 

An assessment of the immunotoxicological effects of Panax notoginseng in 
ovalbumin immunized mice. 
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Abstract  
 

Many herbals have a long history of use and health claims that have not been confirmed 

by scientific studies. As a result, there are numerous cases in which natural products not 

only do not confer suggested benefits, but also cause harmful effects. There are a number 

of studies characterizing the general toxicity of the popular herbal ginseng, but none that 

was formulated specifically to examine whether ingestion of this natural product can 

generate immunotoxicity. In this regard, the effects of high dose and low dose Panax 

notoginseng treatment was studied in ovalbumin/alum immunized C57BL/6 and Balb/c 

mice, respectively. Mice were gavaged for 10 days with either a high dose (1g/kg) or low 

dose (660 µg/kg) notoginseng or PBS as control. On day 4 of notoginseng treatment, 

mice were immunized with 100 µl of a mixture containing 20 mg ovalbumin and 2 mg 

alum by i.p. injection. C57BL/6 and Balb/c mice were harvested 14 days and 12 days 

post immunization, respectively. No effects on body, spleen and thymic weights were 

observed between high or low dose notoginseng-treated and control groups. However, 

there was a decrease in cell numbers in the mesenteric lymph nodes with high dose 

notoginseng treatment. Additionally, ova-specific IgM levels were decreased after 7 days 

of exposure to the high dose of notoginseng. Conversely, there were no effects on ova-

specific IgG levels on day 7 post-immunization. There were also no effects on IgG or 

IgM levels at the later time point in either the high or low dose treatment groups. High 

doses of notoginseng also decreased the ability of spleen cells to produce TNF-α after 

restimulation with LPS ex vivo. Taken together, our results suggest that there is limited 

immunotoxicity associated with high dose notoginseng exposure. However, this toxicity 

is not present with low dose notoginseng treatment. 
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Introduction  

The roots of the Panax notoginseng plant have been traditionally used in Chinese 

medicine because of their potential to treat a variety of ailments including inflammation, 

cardiovascular diseases and cancer. Recently, there has been an increase in the use of this 

plant and other herbals in Western countries including the US. The popularity of Ginseng 

and other natural products is thought to be on the rise because of factors such as increased 

availability over the Internet and other sources. Other reasons include an aging 

population and experimenting with alternative treatment to alleviate symptoms of chronic 

disease (Kinsel and Straus, 2003).  

     The safety and efficacy of many herbals have not been established. This is primarily 

due to the 1994 Dietary Supplement Health and Education Act which classifies natural 

products as foods. There are few studies characterizing the clinical efficacy of Ginseng 

on a variety of conditions including diabetes and cancer (Carabin et al., 2000). However, 

many of these studies are limited by the apparent differences in pharmacological effects 

noted between Ginseng species (Kitts and Hu, 2000). Some studies suggest that there is a 

low incidence of toxicity associated with ginseng intake (Carabin et al., 2000). There 

have also been cases where Ginseng overdoses have been reported. This condition is 

referred to as “ginseng abuse syndrome”. Nonetheless, there is some confusion as to the 

validity of such a syndrome. This confusion is primarily caused by the lack of control or 

analysis for the identification of the ginseng taken, or whether it was actually Ginseng or 

another supplement that caused the toxicities in these patients (Carabin et al., 2000; Kitts 

and Hu, 2000). 
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     The primary biologically active components of notoginseng are thought to be the 

ginsenosides (Hasegawa, 2004). After oral ingestion these ginsenosides can pass through 

the stomach without decomposition but are deglycosylated by colonic bacteria in the 

large intestines prior to absorption. Following absorption, metabolites can be further 

esterified with fatty acids by the liver to form additional bioactive derivatives. Studies 

using rats suggest that the bioavailabilty of the intact ginsenosides is very low varying 

from 0.1-18 percent. 

   Alterations in immune function can lead to several conditions, including increased 

incidence of hypersensitivity disorders, autoimmune and infectious diseases or neoplasia 

(Germolec, 2004; Selgrade, 1999). This change in immune function can result from 

several synthetic or natural agents that can cause injury or insult to the immune system 

(Delaney et al., 2001; Germolec, 2004). These agents are classified as immunotoxicants, 

and are of considerable public health concern (Germolec, 2004). Potential 

immunotoxicants are usually identified by using a variety of strategies to screen for their 

harmful effects on the immune system.  Tests include screening for changes in immune 

organ weights, serum immunoglobulin levels and immune cell numbers (Germolec, 

2004). Additional analyses include the quantitation of cell surface markers by flow 

cytometry and cytokine production in immune cells in response to stimulation or 

challenge (Germolec, 2004).  

    Notoginseng has diverse immunomodulatory properties including reducing 

inflammation and boosting adjuvant activity (Sun et al., 2004). However, none of these 

studies have formally explored the possible immunotoxicites that could arise from 

notoginseng treatment. In this regard, the immunotoxicological effects of Panax 
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notoginseng were examined using ovalbumin immunized Balb/c mice. Balb/c mice were 

gavaged with a high or low dose of notoginseng or PBS controls and immunized with 

ova/alum. During the treatment period, weight changes of the mice were assessed daily as 

a measure of general toxicity between treatment and control groups. Mice were harvested 

10 days post immunization and the weight and cell numbers, as well as cell surface 

molecule expression of immune organs were examined for differences between 

notoginseng and control groups. Spleen cells were stimulated with LPS ex vivo to 

determine if notoginseng altered the immune responsiveness of these cells to an 

inflammatory agent. Antigen specific antibody levels were also characterized in serum 

collected from mice before immunization and immediately after harvesting. Our study 

demonstrates that there is limited immunotoxicity associated with notoginseng intake.  

 
Material and Methods  
 
Animals 

Two- to four- month old male C57BL/6 and Balb/c mice were bred and maintained in the 

animal research facilities at the University of Montana. Mice were housed under specific 

pathogen-free conditions and maintained on a 12-hour dark/light cycles. Standard 

laboratory food and water were provided ad libitum. All protocols for the use of animals 

were approved by the University of Montana Institutional Animal Care and Use 

Committee. 

 

Chemicals 

Extracts were obtained from the roots of the Panax notoginseng (Burk.) F.H. Chen ex 

C.Y. Wu & K.M. Feng plant using ethanol and standardized to contain Rb1 and Rg1 
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ginsenosides at 35 and 34% of the whole extract, respectively. This resulting Noto-GTM 

extract was kindly supplied by Technical Sourcing International, Inc. (TSI, Missoula, 

MT). Levels of Rb1 and Rg1 in the notoginseng extract were determined by high-

performance liquid chromatography analysis by TSI. Certification of analyses was 

approved by Xia Ronglong (QA manager, TSI).  There were no detectable amounts of 

Escherichia coli (E. coli) or Salmonella enterica in the notoginseng preparation 

(unpublished data). The extract was dissolved in complete media (see below) and 

subsequently sterile-filtered through a 0.22 µM Millipore membrane. The 

Lipopolysaccharide (LPS) from E. coli (055:B5) was obtained from Sigma-Aldrich.  

 

Immunization 

Balb/c mice were gavaged once daily for 10 consecutive days with either PBS (vehicle) 

or a low dose  (660 µg/kg) of notoginseng which was equivalent to concentrations which 

the average person ingesting ginseng supplements would be exposed to. In a separate 

experiment, C57BL/6 mice were gavaged with PBS controls or a high dose (1mg/kg) of 

notoginseng. On day 4 of treatment, both BALb/c and C57BL/6 mice were immunized 

with 100 µl of a mixture containing 20 mg ovalbumin and 2 mg alum (ova/alum) via I.P. 

injections. Balb/c mice were harvested 11 days post immunization, (15-days after 

notoginseng treatment), while C57BL/6 mice were harvested 14 days post immunization. 

The thymuses, spleens, mesenteric (MLNs), popliteal (PLNs) and brachial (BLNs) lymph 

nodes were removed from the animals for immunotoxicological analysis. Serum was also 

collected from each mouse and used for measurement of antibody titers.  
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Organ weights and cell counts 

The spleens and thymuses were harvested and weighed for both the high dose and low 

dose notoginseng treated groups. The spleens, MLN, PLN and BLN were processed and 

cell numbers were calculated using a Coulter counter.  

 
Preparation of spleen and lymph node cells 

Single cell suspensions were prepared by pressing spleens or lymph nodes through cell 

strainers using the tops of 1 ml syringes. Erythrocytes were removed from spleen cell 

suspension by hypotonic lysis. Spleen and lymph node cells were then washed and 

resuspended in RPMI (GibcoBRL, Grand Island, N.Y), supplemented with 10% FBS 

(Hyclone, Logan, UT), 50 µM mercaptoethanol, 20 mM HEPES, 10 mM sodium 

pyruvate and 50 µg/ml gentamicin (GibcoBRL, Grand Island, N.Y).   

 
Flow cytometry 

 Detection of cell surface molecule expression on spleen and lymph node cells treated 

with low dose notoginseng was analyzed by fluorescent activated cell sorting (FACS) as 

previously described (Shepherd et al., 2001).  Briefly, cells were harvested and washed 

with PAB (1% bovine serum albumin and 0.1% sodium azide in PBS). Cells were 

blocked with 30 µg of purified rat and/or hamster IgG (Jackson ImmunoResearch, West 

Grove, PA) for 10 minutes to eliminate non-specific staining. Optimal concentrations of 

flurochrome-conjugated murine monoclonal antibodies were used to stain cells for an 

additional 10 minutes. The antibodies used in these experiments were CD4+, CD8+, 

CD11b, CD11c, CD19, and their corresponding isotype controls (BDPharmingen, San 

Diego, CA).  One to five hundred thousand viable cells per treatment (as determined by 
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light scatter profiles) were analyzed using a BD FACSAria flow cytometer and 

FACSDiva software (BD Biosciences, San Jose, CA). 

 

Measurement of OVA-specific antibody 

OVA-specific antibodies for total IgG in serum were detected by indirect ELISA. Briefly, 

96-well plates were coated with 100 µg/ml whole ovalbumin (diluted in dPBS) overnight 

at 4 °C. The wells were washed three times with PBS containing 0.05% (v/v) Tween 20 

(PBST), and blocked with 3% BSA/PBS for 2 hrs. Serum samples were added at 1:10-106 

sequentially diluted samples. BSA/PBS (1%) was used as controls. The plates were then 

incubated for 2 hrs. Aliquots of IgG (1:4000) and IgM (1:250) horseradish peroxidase 

conjugate antibodies were added to each plate for an additional 1 hr. The plates were then 

developed and the optical density (OD) was measured in a spectrophotometer reader at 

450 nm.  

 

Assay for cytokine production by spleen cells ex vivo 

Spleen cells were incubated in RPMI (GibcoBRL, Grand Island, N.Y), supplemented 

with 10% FBS (Hyclone, Logan, UT), 50 µM mercaptoethanol, 20 mM HEPES, 10 mM 

sodium pyruvate and 50 µg/ml gentamicin (GibcoBRL, Grand Island, N.Y). Cell were 

stimulated with LPS and harvested after 24 hrs. Supernatants were collected from the 

LPS stimulated samples and the production of IL-6 and TNF-α were measured by 

enzyme-linked immunosorbent assay  (ELISA). Samples were analyzed according to the 

manufacturer’s recommendations with mouse cytokine-specific BD OptEIA ELISA kits 

(BD PharMingen, San Diego, CA). 
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Results 
 
 
Notoginseng treatment has no effects on the weights of mice 

Biological processes, including the metabolism of chemicals, in humans and laboratory 

animals are related to body weight (Huggett et al., 1996). As such, we first identified the 

toxicity of notoginseng using changes in the weight of C57BL/6 (Fig. 5-1A) or Balb/c 

(Fig. 5-1B) mice. Animals were gavaged with either a high or low dose of notoginseng 

over a ten-day period (Fig. 5-1). Although there was the expected weight loss in both 

control and notoginseng group immediately after immunization, there were no significant 

changes in the weights of animals with either high or low dose notoginseng treatment 

when compared to PBS control groups.  

 

The effects of notoginseng on immune tissues 

Alterations in the weight or cell number of immune tissue generally denote gain or loss of 

cells by either changes in proliferation or cell viability. In these experiments, there were 

no differences in organ weights of the spleens and thymuses in mice treated with either 

high or low dose notoginseng (Fig. 5-2A/C). However, there was a decrease in the cell 

numbers in the mesenteric lymph nodes in mice treated with a high dose of notoginseng 

(Fig. 5-2B). Conversely, spleen, PLN and BLN cell numbers were unchanged with high 

dose notoginseng exposure (Fig. 5-2B). No differences in cell numbers were observed in 

any of the tissues tested after low notoginseng exposure (Fig. 5-2D). 

 

Notoginseng differentially alters antigen specific antibody levels in Balb/c mice 

The primary function of the immune system is to protect the body against pathogens. 
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Figure 5-1. 
 
A.                                                                B. 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5-1.   The body weights of mice are unchanged by notoginseng (NG) 
treatment. (A) C57BL/6 and (B) Balb/c mice were gavaged with low and high dose 
notoginseng, respectively, or PBS controls. At day 4 of treatment mice were immunized 
with ova/alum as previously described in the materials and methods section. Mice were 
assessed daily for changes in body weight, and general overall health. Error bars indicate 
mean ± SEM of 5 C57BL/6 and 6 mice Balb/c mice. 
 

Ova/alum 
Ova/alum 



 130 

Figure 5-2. 

 

A.                                                     B. 

 

C.                                                         D. 

 

 

Figure 5-2. Notoginseng (NG) selectively affects cell numbers, but does not alter the 
weight of immune organs in C57BL/6 and Balb/c mice. Mice were gavaged with low 
(A,B) and high (C,D) dose notoginseng, or PBS controls and immunized with ova/alum 
as previously described in the materials and methods section. At the end of the 
experiment period, immune organs were harvested and analyzed for changes in weight, 
and numbers. Error bars indicate mean ± SEM of 5 C57BL/6 and 6 mice Balb/c mice; *, 
p < 0.05 for the comparison of PBS and notoginseng treated mice.  
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After exposure to antigen, the innate immune system stimulates adaptive immune cells to 

attack foreign antigens. In these experiments, mice that were exposed to notoginseng or 

PBS were immunized with the adjuvant ova/alum to simulate exposure to a pathogen and 

induce B cells to produce antigen specific antibody responses. Serum was collected from 

mice gavaged with high dose notoginseng on days 7 and 17 after exposure (Table 5-1). 

There was a 27 % decrease in IgM levels on day 7 of high dose notoginseng treatment. 

However, there was no significant difference in IgG or IgM in either the control or 

notoginseng treated group on day 17 of the experiment.  

  In Balb/c mice treated with a low dose of notoginseng, serum was collected only at the 

end of the experiment period (day 15) (Table 5-2). There was no significant difference 

between notoginseng and control treated mice in ova-specific IgG and IgM with low dose 

exposure. 

 
Notoginseng exposure elicits dose dependent differences in the sensitivity of splenocytes 

to LPS stimulation ex vivo 

The spleen is the largest secondary lymphoid organ and contains a variety of immune 

cells including B cells and T cells, in addition to the APCs macrophages and DCs  (Cesta, 

2006; Elmore, 2006). Most of these cells respond to a stimulus such as LPS by a number 

of mechanisms including the production of cytokines. As such, we examined the effects 

of notoginseng on the response of spleen cells to the bacterial component, LPS.  Spleen 

cells from PBS controls and notoginseng treated groups were stimulated with 1 µg/ml 

LPS for 24 hrs. As shown in Fig. 5-3A, TNF-α production was reduced by 25 % in the 

high dose notoginseng treated group as compared to PBS control. There was also a 

 



 132 

Table 5-1. High Dose notoginseng treatment differentially affects antigen-specific 
antibody generation in vivo 

  
 DAY 7 post initial NG exposure DAY 17 post initial NG exposure 
Antibody Type PBS a Notoginseng PBS Notoginseng 
 IgG b 0.58 ± 0.2 0.38 ± 0.15 0.58 ± 0.02 0.62 ± 0.07 

 IgM 0.36 ± 0.02 0.26 ± 0.04* 0.54 ± 0.25  0.28 ± 0.10  

 

a C57BL/6 mice were gavaged with a PBS controls or a high dose of notoginseng (NG) 

(1g/kg) for 10 days. At 4-days of treatment mice were immunized with ova/alum by I.P 

injections. Sera were collected from mice at 7 days and 17 days after notoginseng 

exposure (3-days and 14 days post immunization, respectively).  

b Optical density (O.D.) for serum antibody levels as determined by ELISA.  

c Error bars indicate mean ± SEM of 5 mice; *, p < 0.05 for the comparison of PBS and 

notoginseng treated mice.  
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Table 5-2. The effects of notoginseng on ova-specific antibody production in Balb/c 
mice 
 

DAY 14 post initial exposure to NG 

Antibody Type PBS Notoginseng 

O.D IgG 0.40 ± 0.16 0.34 ± 0.12  

O.D IgM 0.40 ± 0.08  0.33 ± 0.06  

 

a Balb/c mice were gavaged with a low dose of notoginseng (NG) (660 µg/kg) for 10 

days. At 4-days of notoginseng treatment mice were immunized with ova/alum by I.P 

injections. Sera were collected from mice at 14 days after notoginseng exposure (11 days 

post immunization).  

b Optical density (O.D.) for serum antibody levels as determined by ELISA.  

c Error bars indicate mean ± SEM of 6 mice. 
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Figure 5-3. 

 

   A.                                                              B.                     

        

C.                                                                     D. 

        

 

 

 

Figure 5-3. TNF-α  production by LPS stimulated spleen cells is reduced by high 
dose notoginseng (NG) exposure. (A, B) C57BL/6 and (C, D) Balb/c mice were 
gavaged with low or high dose notoginseng, or PBS controls and immunized with 
ova/alum as previously described in the materials and methods section. Cells from the 
spleens of control and notoginseng treated mice were exposed to 1 µg/ml of LPS for 24 
hours. Supernatants were harvested and analyzed for TNF-α and IL-6 production by 
ELISA. Error bars indicate mean ± SEM of 5 C57BL/6 mice and 6 Balb/c mice; *, p < 
0.05 for the comparison of PBS and notoginseng treated mice. 
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trend towards decreased TNF-α production with spleen cells obtained from mice treated 

with low dose notoginseng. This decreased trend was also observed with IL-6 production 

with both high and low dose notoginseng. 

 

The percentages of T cells, B cells, DCs and macrophages in immune tissues are not 

altered by low dose notoginseng treatment  

DCs and macrophages are important antigen presenting cells for initiating the activation 

of T and B cells thereby eliciting adaptive immune response. To determine whether there 

were any alterations in any of these populations by notoginseng treatment, cells were 

obtained from the spleen, PBLN and MLN and stained for lineage marker cell surface 

expression. There were no differences in the populations of DCs (CD11c+), macrophages 

(CD11c-/ CD11b+), Th cells (CD4+), Tc cells (CD8+) or B cells (CD19+) with notoginseng 

treatment as compared to PBS control groups (Fig. 5-4). 

 
Discussion and conclusion 

Immunotoxicology is the study of the adverse effects of natural and synthetic compounds 

on the immune system. Exposure to an immunotoxicant can result in immune dysfunction 

with outcomes including immunosuppression, or alternatively, allergy, autoimmunity or a 

number of other inflammatory based diseases. Therefore, identification of 

immunotoxicants is essential to maintaining homeostasis in an organism because of the 

critical role the immune system plays in sustaining host resistance to microbes. In this 

study, we evaluated the potential for notoginseng to elicit immunotoxicites in mice.      

As chemicals can generate general toxicities if they affect multiple organs, we examined 

weight changes in the tested animals throughout our experiment period. 
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Figure 5-4. 
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Figure 5-4. Low dose notoginseng (NG) treatment does not alter the percentages of 
APCs and T cells in the spleen and lymph nodes. Balb/c mice were gavaged with low 
dose notoginseng, or PBS controls and immunized with ova/alum as previously described 
in the materials and methods section. Based on lineage markers expression, cells from the 
spleen, MLN and PBLN were analyzed for changes in the percentages of Th cells (CD4+), 
T cytotoxic cells (CD8+), B cells (CD19+), dendritic cells (CD11c+) and macrophages 
(CD11c- /CD11b+) by flow cytometry.  Error bars indicate mean ± SEM of 6 Balb/c 
mice. 
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     There were no changes in the weights of the mice at both concentrations of 

notoginseng tested over a ten-day period, which is a good indication that acute doses of 

notoginseng do not induce overt toxicity. Our results with notoginseng are in line with 

previous studies that the LD50 for Panax ginseng in mice as high as 5g/kg for oral 

administration (Carabin et al., 2000; Kitts and Hu, 2000).  

      Standard immunotoxicological tier testing involves assessing the weight of immune 

organs after exposure to a potential immunotoxicant (Burns-Naas et al., 2001). The 

thymus is one of the primary organs of the immune system. It is involved in “educating” 

T cells for recognition of self and non-self antigens. The spleen is a secondary immune 

organ, with the primary function of filtering the blood and removing both foreign 

antigens and circulating dead cells. Both immune organs are therefore important for 

optimal immune responses, and have been widely researched for toxicants which can 

impair their functions. No changes in the weight of spleen or thymic organs were 

observed at either dose of notoginseng examined. Changes in the weight of these organs 

usually occur because of edema or an alteration in the proliferation of immune cell in 

response to an immunotoxicant.  As no differences were observed between treated and 

control groups, we concluded that notoginseng does not alter the number of cells present 

in these organs. 

     Lymph nodes are part of an immune network that filters antigens from interstitial 

lymphatic fluid (Burns-Naas et al., 2001).The mesenteric lymph nodes are a part of the 

gut associated lymphoid tissue (GALT), the intestinal branch of the body’s protection 

against pathogens (Spahn et al., 2006). MLNs serve as sites where DCs prime T cells for 

an immune response (Spahn et al., 2006). In our studies, decreased cell numbers were 
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observed in the MLNs with high dose notoginseng exposure. However, no changes in cell 

numbers were observed in the spleens and PBLNs, or with low doses of notoginseng. The 

change in the MLNs may be due to these immune tissues being exposed to the highest 

amounts of notoginseng constituents. Even after metabolism by gut flora, ginsenoside 

concentrations would be highest in the GALT areas following oral administration of 

notoginseng. This is because ginsenosides absorbed in the intestines have not yet been 

decreased by first pass metabolism. The decreased cell numbers could have been due to 

decreased ability of APC to induce T cell proliferation. Although we have not studied the 

effects of notoginseng on macrophages and DCs after continuous exposure to 

notoginseng, our previous studies demonstrated decreases in the activation and function 

of these cells after a single exposure to this herbal (Rhule et al., 2006b). However, T cell 

proliferation was not influenced by a single notoginseng treatment of DCs in these 

studies. Therefore, experiments could be designed to examine if continuous exposure to 

notoginseng could affect DCs ability to activate T cell proliferation. Additionally, it is 

also possible that notoginseng or its derivatives induced necrosis or apoptosis of cells in 

the MLNs leading to the observed decreased cell numbers. 

   The activation of B cells by soluble protein antigens such as ovalbumin requires the 

involvement of T helper (Th) cells. The primary antibody type secreted after B cell 

activation is IgM. In order for other types of antibodies to be secreted, B cells have to 

undergo the process of class switching. This process cannot occur in B cells without 

signals from Th cells such as CD40-CD40 ligand interactions. In our experiments, IgM 

levels were decreased at the 7-day treatment time point (3 days post immunization) with 

high doses of notoginseng. However, there were no changes in IgG levels at this time 
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point. This indicates that the effects of notoginseng may occur early in B cell activation 

before class switching from IgM to IgG occurs. Additionally, because the entire animal 

was exposed to notoginseng, it is unclear which immune cells or processes were directly 

affected by treatment.  Notoginseng exposure could have altered a number of events 

including, antigen uptake, T cell interactions with B cells or their activation by APCs. 

There were no differences in IgM or IgG levels between PBS controls and notoginseng 

treated mice at day 17 of high dose and day 15 of low dose exposure. It should be noted 

at this time-point notoginseng was no longer being administered to the mice, as the 10 

days treatment period was completed. It is therefore possible that the effects were 

“washed out” after a week of no treatment with notoginseng. Additional experiments 

focusing on the levels of antibody present in both low dose and high dose notoginseng 

mice over the entire treatment period are therefore warranted. 

    Previous studies indicated that notoginseng possesses adjuvant activity, increasing ova 

specific antibody levels in mice after treatment (Liou et al., 2005; Sun et al., 2007; Yang 

et al., 2007b). However, in our study ginseng reduced IgM levels at day 7 of high dose 

notoginseng exposure, with a trend towards decreased IgG production at the end of the 

experiment period in both high and low dose groups. The reason(s) for discrepancies 

between our studies could have been due to a number of factors including differences in 

the components of ginsenosides used in those studies compared to the sample of 

notoginseng used in our experiment.   

    Cytokines are important mediators of an immune response. TNF-α and IL-6 are among 

the first cytokines produced after immune stimulation. There was a reduction in TNF-α 

production in spleen cells stimulated ex vivo with LPS in high dose notoginseng 
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exposure, with an overall trend towards decreased cytokine production with both low and 

high dose notoginseng treatment. These decreases in TNF-α and IL-6 are consistent with 

our previous findings of reduced production of LPS induced pro-inflammatory cytokines 

with notoginseng treatment (Rhule et al., 2006b; Smolinski and Pestka, 2003a)(submitted 

article). In our previous studies, the effects of notoginseng on macrophages and DCs 

were examined in RAW2467 cells and bone marrow derived dendritic cells, respectively. 

As there are other cells present in the spleen that produce TNF-α and IL-6 in response to 

LPS stimulation, it is possible that these cells are not as sensitive to notoginseng 

treatment. Nevertheless, this possibility needs to be examined. 

         There were no changes in the cell surface molecule expression for any of the 

molecules tested. As these molecules are classic lineage markers for identification of 

different immune cell types, this suggests that none of the populations examined were 

being altered by notoginseng treatment. Overall it gives a good indication that low dose 

notoginseng treatment does not alter proliferation or increase apoptosis in the spleen, 

BPLN or MLN. 

      Although there have been a number of toxicological studies in ginseng species, 

studies on its immunotoxicological effects were not evident. In our study, we extended 

the previous findings on the high LD50 associated with the Panax ginseng species, to 

Panax notoginseng. Our study also established for the first time that there are no 

immunotoxicological effects observed in mice treated with low dose notoginseng.  
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CHAPTER 6 
 

Panax Notoginseng reduces acetylated-LDL uptake by BMDCs 
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Abstract 

Panax notoginseng has been purported to decrease the effects of conditions such as 

diabetes mellitus, hypertension, hyperlipidemia and inflammatory diseases in a number of 

studies. These abnormalities are all known risk factors for atherosclerosis. Uptake of 

modified LDL by immune cells plays a major role in the early stages of atherosclerosis. 

In this regard, the effects of notoginseng on acetylated LDL (ac-LDL) uptake were 

examined. Bone marrow derived dendritic cells (BMDCs) were treated with notoginseng 

and exposed to FITC-conjugated ac-LDL. Notoginseng decreased ac-LDL uptake by 

immature BMDC as measured by flow cytometry. Furthermore, following stimulation 

with the inflammatory cytokine TNF-α, notoginseng effectively attenuated ac-LDL 

uptake by BMDCs. Expression of the accessory molecule CD40 was inhibited by 

notoginseng on TNF-α treated BMDCs. These studies suggest that notoginseng has the 

potential to alter uptake of modified LDL by antigen presenting cells.         

          

 Introduction 

Inflammatory and immunologic mechanisms contribute to the initiation and progression 

of atherosclerotic lesions (Kinlay and Egido, 2006). The earliest identifiable 

atherosclerotic lesion is characterized by immune cell infiltration and lipid accumulation 

(Hasham and Pillarisetti, 2006). These immune cells include activated macrophages, 

dendritic cells and T lymphocytes (Link and Bohm, 2002) (Ohashi et al., 2004).  

    There are a number of antigens that are thought to be responsible for cellular immune 

reactions in atherogenesis. Modified antigens such as oxidized low density lipoprotein 

(ox-LDL) are among the major endogenous activators of the immune system (Link and 
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Bohm, 2002). In vitro studies have demonstrated that elevated levels of modified LDLs 

including ox-LDL lead to activation and maturation of antigen presenting cells (APCs) 

such as dendritic cells (DCs) (Link and Bohm, 2002; Lord and Bobryshev, 2002). 

Activation of DCs by ox-LDL induces classic accessory/costimulatory molecule 

expression including CD40, CD86 and MHC II (Cao et al., 2003). This initiates increased 

T cell activation and proliferation, representing a chronic inflammatory response. This 

process involves T lymphocytes recognizing ox-LDL, resulting in an autoimmune 

response against cells bearing that antigen (Stemme et al., 1995). 

     The dietary supplement Panax notoginseng has been purported to have 

immunomodulatory as well as cardiovascular properties. Previous studies in our lab 

established that notoginseng reduced inflammatory mediatory production by both DCs 

and macrophages in vitro (Rhule et al., 2006b)(unpublished data). In a study with Wistar 

male adult rats on a fat-enriched diet, treatment with notoginseng decreased the total 

cholesterol and triglycerides present in the blood (Cicero et al., 2003). Additionally, 

notoginseng has also been demonstrated to reduce high blood pressure (Lei and Chiou, 

1986). To date, there have been no studies examining the effects of notoginseng on 

modified-LDL uptake and atherosclerotic plaque formation. As both of these events have 

been demonstrated to have immune and cardiovascular components, we investigated the 

effects of notoginseng on ac-LDL uptake by bone marrow derived dendritic cells 

(BMDCs). BMDCs were treated with notoginseng and exposed to FITC-conjugated ac-

LDL, a modified lipoprotein that is similar to ox-LDL, but more stable. In some 

experiments, BMDCs were exposed to the pro-inflammatory cytokine TNF-α, in 

conjunction with ac-LDL to simulate a mild inflammatory condition. Following 
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notoginseng treatment, levels of ac-LDL uptake and expression of the activation 

molecule CD40 on BMDCs were characterized by flow cytometry. Our study 

demonstrates that notoginseng reduces the uptake of ac-LDL by BMDCs and provides 

information on potential uses of this herbal for the treatment of atherosclerosis.  

 

Materials and Methods 

Mice 

Male and female C57BL/6 mice aged 4-8 weeks old were bred and maintained in the 

animal research facilities at the University of Montana. Mice were housed under specific 

pathogen-free conditions and maintained on 12-hour dark/light cycles. Standard 

laboratory food and water were provided ad libitum. Protocols for the use of animals 

were approved by the University of Montana Institutional Animal Care and Use 

Committee. 

 

Cells   

Bone marrow cells (BMCs) were collected from the femur and tibia of C57BL/6 mice for 

in vitro use and differentiated in BMDCs as previously described in Chapter 4. Briefly, 

BMCs were grown in cRPMI with 30 ng/ml granulocyte-macrophage colony stimulating 

factor (GM-CSF), (Leinco, St Louis, Missouri) at 1X10 6 cells per ml in T75 flasks. 

Media and growth factor were replaced on days 3 and 5. Cells were harvested after 7 

days and DCs purified (>90%) using CD11c-APC antibodies and anti-APC Miltenyi 

magnetic beads (Miltenyi Biotec, Auburn, CA) according to the manufacturer’s 

instructions. 
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 Chemicals 

Noto-GTM extracts were kindly supplied by Technical Sourcing International, Inc. (TSI, 

Missoula, MT). Panax notoginseng (Burk.) F.H. Chen ex C.Y. Wu & K.M. Feng extracts 

was acquired from the root of the plant using ethanol and standardized to contain Rb1 

and Rg1 ginsenosides at 35 and 34% of the whole extract, respectively. The 

quantification of Rb1 and Rg1 in the notoginseng extract was determined by high-

performance liquid chromatography analysis by TSI. Certification of analyses was 

approved by Xia Ronglong (QA manager, TSI).  Levels of Escherichia coli (E. coli) or 

Salmonella enterica were undetectable in the notoginseng preparation (unpublished data). 

The extract was dissolved in complete media (see below) and subsequently sterile-filtered 

through a 0.22 µM Millipore membrane. Acetylated FITC-conjugated LDL and TNF-α 

were obtained from Molecular Probes (Eugene, OR) and Peprotech Inc (Rock Hill, NJ), 

respectively.  

 

 Cell Activation and Treatment 

BMDCs (1 X 106 cells per well) were treated with 0 or 200 µg/ml of notoginseng and/or 

stimulated with TNF-α (10ng/ml) for 24 hrs at 37 0C and 5% CO2 in 6-well plates. At 22 

hrs of treatment, cell were incubated with 1 µg/ml ac-LDL for the last 2 hrs. Cells were 

harvested for FACS analyses. The viability of BMDCs used in all experiments was 

greater than 90% as determined by Trypan blue exclusion. 
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Flow Cytometry 

 Accessory molecule expression and fluorescent molecule uptake by BMDCs were 

performed by fluorescent activated cell sorting (FACS) analysis as previously described 

(Rhule et al., 2006b; Shepherd et al., 2001).  Briefly, BMDCs that were previously 

incubated with FITC-conjugated ac-LDL were harvested and washed with PAB (1% 

bovine serum albumin and 0.1% sodium azide in PBS). Cells were blocked with 30 µg of 

purified rat and/or hamster IgG (Jackson ImmunoResearch, West Grove, PA) for 10 

minutes to eliminate non-specific staining. Flurochrome-conjugated monoclonal 

antibodies were used to stain cells for an additional 10 minutes. The antibodies used in 

these experiments were CD40-PE, CD11c-APC and their corresponding isotype controls 

(BDPharmingen, San Diego, CA).  One hundred thousand viable cells per treatment (as 

determined by light scatter profiles and propidium iodide staining) were analyzed using a 

BD FACSAria flow cytometer and FACSDiva software (BD Biosciences, San Jose, CA). 

 

Statistics 

All statistical analyses were performed using GraphPad Prism 4.0a for the Macintosh 

(GraphPad Software, San Diego, CA).  Data represents the mean ± SEM of 3 samples for 

3 independent experiments unless otherwise stated. Differences between treatment groups 

were analyzed by Student’s t-test. Data sets with multiple comparisons were evaluated by 

one-way analysis of variance (ANOVA) with Dunnett’s test.  Values of p < 0.05 were 

determined to be significant. 
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Results 

Notoginseng reduces ac-LDL uptake by BMDCs 

DCs are specialized innate immune cells with the ability to phagocytose antigens 

(Niedergang and Chavrier, 2005). Transformed-LDL has been recognized as one of the 

primary antigens present in the development of atherosclerotic lesions. In this regard, 

DCs were treated with 200 µg/ml notoginseng and exposed to FITC-conjugated ac-LDL. 

There was a significant increase in the fluorescence intensity of BMDCs exposed to ac-

LDL (Fig 6-1). Notoginseng reduced the uptake of ac-LDL by 30% when compared to 

untreated controls (Fig 6-1A). In some experiments, cells were exposed to TNF-α as this 

cytokine is associated with inflammatory responses within atherosclerotic plaques. 

Notoginseng decreased uptake of ac-LDL by TNF-α-treated BMDCs (Fig 6-1B). 

  

 CD40 expression on TNF-α-treated BMDCs is decreased by notoginseng 

CD40 is a cell surface protein that is constitutively expressed on DCs and other APCs 

and is upregulated during inflammation (Lutgens et al., 2007). The interaction of CD40 

and its ligand plays a significant role in the development and progression of 

atherosclerosis (Lutgens et al., 2007). Therefore, we examined the effects of notoginseng 

on the expression of CD40 on TNF-α-treated BMDCs after exposure to ac-LDL. CD40 

expression was decreased on the notoginseng-treated BMDCs exposed to ac-LDL when 

compared to TNF-α-treated ac-LDL controls (Fig 6-2).  
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Figure 6-1. 

A.                                                              

 

 

 

 

B. 

 

 

Figure 6-1. Notoginseng impairs ac-LDL uptake. BMDCs were treated with 200 µg/ml 
notoginseng and/or stimulated with TNF-α for 24 hrs. Cells were exposed to FITC-
conjugated ac-LDL 2 hrs prior to harvesting. Uptake of (A) ac-LDL and (B) ac-LDL by 
TNF-α-treated BMDCs was assessed by flow cytometry. Data represents mean ± SEM of 
three samples. # indicates significant differences between LDL-exposed and unexposed 
cells; * indicates significant differences between LDL-exposed control- and notoginseng-
treated samples (p<0.05). Data are representative of three independent experiments. 
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Figure 6-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-2. CD40 expression is reduced by notoginseng on TNF-α-treated BMDCs 
exposed to ac-LDL. BMDCs were treated with notoginseng and TNF-α for 24 hrs and 
then exposed to FITC-conjugated ac-LDL for an additional 2 hrs. The expression of the 
costimulatory molecule CD40 was assessed by flow cytometry. Data represents mean ± 
SEM of three samples. # indicate significant differences between LDL-exposed and 
unexposed cells; * indicates significant differences between the LDL-exposed control- 
and notoginseng-treated samples (p<0.05). Data are representative of three independent 
experiments. 
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Discussion and conclusion 

   Development of atherosclerotic plaques involves complex interactions between the 

endothelium, inflammatory cytokines, and numerous blood cells and components (Libby, 

2004). Notoginseng has been shown to decrease inflammatory mediator production by a 

variety of immune cells. In this study, we investigated the effects of notoginseng on ac-

LDL uptake by BMDCs.  Using two models of exposure, notoginseng reduced ac-LDL 

uptake under non-inflammatory and mild inflammatory conditions. Exposing BMDCs to 

ac-LDL in the absence of TNF-α models the effects of notoginseng on antigen uptake. 

     However, there is considerable evidence that cytokines such as IL-1, IL-6, and TNF-α 

are involved in the formation of atherosclerotic plaques (Libby, 2004). In addition 

expression of cell surface molecules such as CD40 by cells in the plaque region fuels the 

inflammatory process by further leukocyte recruitment (Libby, 2004). Exposure of TNF-

α-treated BMDCs to ac-LDL allows examination of the effects of notoginseng on antigen 

uptake during inflammatory conditions that would be expected in an atherosclerotic 

plaque. In our experiments, uptake of ac-LDL was reduced in notoginseng-treated 

BMDCs. Furthermore, CD40 expression was reduced on the notoginseng-treated 

BMDCs. This might lead to decreased activation of other immune cells within the plaque. 

However, this possibility remains to be examined. 

    Because notoginseng effectively reduced the uptake of ac-LDL by BMDCs, its 

potential to alter atherosclerotic plaque formation in ApoE/LDL receptor double 

knockout mice was evaluated (data not shown). These mutant mice are prone to develop 

atherosclerotic plaques (Bunderson et al., 2004). In these experiments ApoE-/-/LDLr-/- 

mice were orally dosed with 2.5 mg/ml of notoginseng in their drinking water over a ten-
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week period.  Unfortunately, plaque formation at the harvest (ten weeks) was not 

substantial enough to draw a conclusion between control-and notoginseng-treated mice. 

Therefore, these studies are presently being expanded to a time point of twenty weeks to 

facilitate more pronounced plaque formation. 

    Collectively, our data demonstrate that treatment of dendritic cells with notoginseng 

reduces their ability to phagocytose modified LDL. Furthermore, expression of the co-

stimulatory molecule, CD40, was decreased by notoginseng on ac-LDL-treated BMDCs.  

Our results demonstrate that notoginseng may have the potential to decrease phagocytic 

activity of DCs in atherosclerotic plaque formation and provide provocative information 

on the use of this herbal for the potential prevention or treatment of cardiovascular 

disease. 

       

 

 

 

 

 

 

 

 

 

 

 



 155 

 

References 
 
Bunderson, M., Brooks, D.M., Walker, D.L., Rosenfeld, M.E., Coffin, J.D. and Beall, 
H.D., 2004. Arsenic exposure exacerbates atherosclerotic plaque formation and increases 
nitrotyrosine and leukotriene biosynthesis. Toxicol Appl Pharmacol 201, 32-39. 
Cao, W., Bobryshev, Y.V., Lord, R.S., Oakley, R.E., Lee, S.H. and Lu, J., 2003. 
Dendritic cells in the arterial wall express C1q: potential significance in atherogenesis. 
Cardiovasc Res 60, 175-186. 
Cicero, A.F., Vitale, G., Savino, G. and Arletti, R., 2003. Panax notoginseng (Burk.) 
effects on fibrinogen and lipid plasma level in rats fed on a high-fat diet. Phytother Res 
17, 174-178. 
Hasham, S.N. and Pillarisetti, S., 2006. Vascular lipases, inflammation and 
atherosclerosis. Clin Chim Acta 372, 179-183. 
Kinlay, S. and Egido, J., 2006. Inflammatory biomarkers in stable atherosclerosis. Am J 
Cardiol 98, 2P-8P. 
Lei, X.L. and Chiou, G.C., 1986. Cardiovascular pharmacology of Panax notoginseng 
(Burk) F.H. Chen and Salvia miltiorrhiza. Am J Chin Med 14, 145-152. 
Libby, P., 2004. What happens inside an atherosclerotic plaque? International Congress 
Series 1262, 253-256. 
Link, A. and Bohm, M., 2002. Potential role of dendritic cells in atherogenesis. 
Cardiovasc Res 55, 708-709. 
Lord, R.S. and Bobryshev, Y.V., 2002. Hallmarks of atherosclerotic lesion development 
with special reference to immune inflammatory mechanisms. Cardiovasc Surg 10, 405-
414. 
Lutgens, E., Lievens, D., Beckers, L., Donners, M. and Daemen, M., 2007. CD40 and its 
ligand in atherosclerosis. Trends Cardiovasc Med 17, 118-123. 
Niedergang, F. and Chavrier, P., 2005. Regulation of phagocytosis by Rho GTPases. Curr 
Top Microbiol Immunol 291, 43-60. 
Ohashi, R., Mu, H., Yao, Q. and Chen, C., 2004. Atherosclerosis: immunopathogenesis 
and immunotherapy. Med Sci Monit 10, RA255-260. 
Rhule, A., Navarro, S., Smith, J.R. and Shepherd, D.M., 2006. Panax notoginseng 
attenuates LPS-induced pro-inflammatory mediators in RAW264.7 cells. J 
Ethnopharmacol 106, 121-128. 
Shepherd, D.M., Steppan, L.B., Hedstrom, O.R. and Kerkvliet, N.I., 2001. Anti-CD40 
Treatment of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-exposed C57Bl/6 mice 
induces activation of antigen presenting cells yet fails to overcome TCDD-induced 
suppression of allograft immunity. Toxicology and Applied Pharmacology 170, 10-22. 
Stemme, S., Faber, B., Holm, J., Wiklund, O., Witztum, J.L. and Hansson, G.K., 1995. T 
lymphocytes from human atherosclerotic plaques recognize oxidized low density 
lipoprotein. Proc Natl Acad Sci U S A 92, 3893-3897. 
 

 



 156 

 

CHAPTER 7 

Summary 

     In 1991 the NIH launched its office of Complementary and Alternative Medicine 

(now the National Center for Complementary and Alternative Medicine) in response to 

the public’s huge interest in non-conventional medicine (http://nccam.nih.gov/, ; Kinsel 

and Straus, 2003). One of the largest subsidiaries of the alternative medicine group is 

dietary supplements, primarily the herbal products division (http://nccam.nih.gov/). Of 

these herbals, ginseng was the second most widely used by the U.S. population in 2002. 

Ginseng is purported to have numerous pharmaceutical effects including 

immunomodulation, lowering blood sugar and reducing hypertension (Carabin et al., 

2000; Kitts and Hu, 2000; Lei and Chiou, 1986). However, the safety and efficacy of this 

herbal product has not been extensively examined. To address aspects of this deficiency 

we examined the immunomodulatory effects of Panax notoginseng on the fate and 

function of APCs. We hypothesized that notoginseng alters APC fate and function by 

decreasing activation molecule expression and inflammatory mediator production by 

macrophages and DCs. Furthermore, we believe that these effects may be exploited to 

treat immune-related diseases such as atherosclerosis and rheumatoid arthritis. As such, 

we characterized the immunonomodulatory effects of notoginseng on APCs, the 

incidence of toxicity for notoginseng and eventually extended our studies to examine the 

effects of notoginseng on LDL uptake and atherosclerotic plaque formation in a mouse 

model. 
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     In our study we examined the effects of notoginseng on APCs using the murine 

marophage cell line RAW264.7, the dendritic cell line DC2.4 and primary BMDCs. As 

cytokines are important mediators of the inflammatory response, changes in the 

production of these proteins were initially assessed (Andreakos et al., 2004b). 

Notoginseng reduced the LPS induced production of the pro-inflammatory cytokines 

TNF-α and IL-6 in RAW264.7, DC2.4 and BMDCs. The use of BMDCs also afforded us 

the opportunity to test IL-1β and IL-12 levels which were not produced in detectable 

amounts in the immortalized cell lines. The production of these cytokines was also 

inhibited by notoginseng.  

     Accessory molecule expression is integral for APCs to perform their primary function 

of activating T cells (van Kooten and Banchereau, 2000). In our experiments, expression 

of the key costimulatory molecules CD40 and CD86 was decreased on RAW264.7 and 

DC2.4 cells stimulated with LPS. However, CD86 proved not to be as sensitive to 

notoginseng treatment and required pretreatment of BMDCs to significantly affect its 

expression. In addition, MHC II expression was also not altered by concurrent treatment 

of BMDCs with notoginseng and LPS stimulation, but was decreased with pretreatment.  

     Inflammatory mediator production can be induced in immune cells via activation of 

toll-like receptors (TLRs) including TLR3, TLR4 and TLR9. In our studies, notoginseng 

attenuated TNF-α production and CD40 expression induced by TLR3, 4 and 9 activation 

in DC2.4 cells. Alternatively, CD86 expression was reduced by notoginseng when DCs 

were activated with ligands to TLR 3 and 4, but not TLR 9. Also, IL-6 production by 

notoginseng-treated cells stimulated with LPS and CpG was reduced when compared to 

controls. TLR 3 ligand-stimulated DCs were unaffected by notoginseng treatment. While 
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we do not fully understand the differential effects notoginseng on APCs, it is clear that 

DC responses to TLR ligands are affected by this herbal extract. 

     Inflammatory enzymes mediate immune responses by the synthesis of proteins or 

molecules capable of modulating the immune system. The mRNA expression of COX-2 

was inhibited by notoginseng in RAW264.7 cells. Previous studies in our lab also 

established that the activity of COX-1/COX-2 was inhibited by notoginseng (Seaver and 

Smith, 2004). Future experiments should be carried out to examine if notoginseng might 

affect prostaglandin levels in DCs. 

    Activation of the transcription molecule NFκB results in inflammatory mediator 

production by APCs. Notoginseng reduced the LPS-induced nuclear levels and activity of 

the p65 component of NFκB in BMDCs. Future studies should examine whether other 

transcription factors such as Rel B and c Rel components of NFκB, as well as non-NFκB 

mediated pathways such as AP-1 are also affected by notoginseng. 

    A primary function of APCs is to phagocytose antigens for presentation to T cells. In 

this regard, we examined whether notoginseng affected antigen uptake by DCs. 

Notoginseng reduced ovalbumin antigen uptake by BMDCs. As antigen uptake as well as 

inflammatory mediator functions were impaired by notoginseng, we designed studies to 

examine whether notoginseng could alter the ultimate fate of DCs, the activation of 

antigen-specific T cells. Our studies demonstrated that notoginseng did not affect DC 

activation of antigen-specific T cells in vitro or in vivo.  

    Therefore, notoginseng reduced the production of inflammatory mediators and innate 

responsiveness by APCs, but did not affect the initiation of T cell-mediated adaptive 
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immunity. The long-term implications of our results suggest that notoginseng might be a 

natural product capable of treating various inflammatory diseases. 

    Based on these results, we subsequently evaluated if notoginseng generated any 

associated general toxicities or immunotoxic effects. Studies on the effects of high dose 

and low dose notoginseng treatment in mice showed limited toxicities following oral 

consumption of notoginseng. Moreover, these toxicities were only observed at the high 

dose of notoginseng tested.  

     Finally, we evaluated the effects of notoginseng on atherosclerosis, an important 

disease contributing to morbidity and mortality in developed countries (Keaney, 2000). 

Initial studies in our lab demonstrated that treatment of BMDCs with notoginseng 

resulted in decreased uptake of acetylated-LDL (ac-LDL). Additional experiments have 

been implemented to determine whether notoginseng decreases plaque formation in 

ApoE/LDL receptor, double knockout mice, which are prone to develop atherosclerotic 

plaques.  Future studies in our lab will characterize the effects of notoginseng on plaque 

formation in these mice. The effects of notoginseng on the concentrations of 

inflammatory mediators in the serum of treated mice will also be analyzed.  

      In conclusion, notoginseng decreased the innate and inflammatory functions of APCs 

without altering their fundamental fate of activating antigen-specific T cell activation. 

Our studies demonstrate a low incidence of immunotoxicity associated with notoginseng 

consumption in mice. Taken together, our research highlights the potential usefulness of 

notoginseng in the treatment of inflammatory diseases. Future studies should characterize 

the specific mechanisms of action of notoginseng, and how this popular medicinal herbal 

can be exploited to treat diseases. 
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