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POPULATION AND MORPHOLOGICAL CHANGES IN AMERICAN KESTRELS 

THROUGH SPACE AND TIME 

Teresa E. Ely, M.S. 

University of Nebraska, 2016 

Advisor: John P. DeLong 

A once common raptor, the American kestrel (Falco sparverius) has experienced 

population declines in the last two decades throughout North America. Many hypotheses 

exist about the decline, including mortality from West Nile virus, rodenticide poisoning, 

climate change, an increase in predators, and core habitat loss or degradation, which 

could influence food availability. Food availability is key to raptor survival and 

reproduction, and changes in food availability throughout the year can have lifelong 

effects on size and body condition. Here we examine how morphology, specifically mass 

and wing chord, has changed at seven migration sites throughout North America as 

kestrel populations have declined. We hypothesized that if kestrel populations were 

declining due to lower food availability, there would also be declines in body size. Our 

results show a decrease in kestrel populations at all sites and a decline in mass and wing 

chord at five and four sites, respectively. We examined fat scores at two intermountain 

region migration sites and found that fat scores increased at one site and decreased at 

another. These results implicate a role for food availability in driving declines in kestrel 

populations, most likely during the breeding season. We also found differences in body 

mass and wing chord among migration sites. Despite being correlated within sites, 

variation in body mass and wing chord across sites differed, giving rise to variation in 

sexual size dimorphism and wing loading across sites. This variation may be due to 
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selective forces acting on traits, though random divergence due to low gene flow may be 

driving variation in wing chord. For body mass, regional variation in males and females 

could be a response to ecological processes. Overall, we can conclude that lower food 

availability is affecting some sites and not others, and that kestrels show regional 

morphological variation.



iv!!

ACKNOWLEDGEMENTS 

I would especially like to thank my advisor Dr. John DeLong. He has been an 

excellent mentor would helped me transition from a wandering seasonal wildlife biologist 

into a budding raptor biologist. He taught me how to take what I have learned in the field 

and apply it to meaningful research. I would like to thank my committee members Dr. 

Gwen Bachman and Dr. T.J. Fontaine for providing additional help and guidance. I 

would also like to thank SBS special funds for providing addition help.  

I would like to thank the graduate students in the School of Biological Sciences 

for providing support, entertainment and sanity. I would especially thank Jean Philippe 

Gibert, Shivani Jadeja, and Anna Tatarko for helping me code, lending an ear, and 

thoughtful discussions about life. I would like to thank the entire Shizuka Lab for keeping 

me on my toes in the office. 

I would like to thank my family for their love and support from hundreds of miles 

away. I would like to thank Erica, Jenny, Helen, and Laura for providing stories from 

their graduate school experiences as we all decided to go back to school at the same time. 

Finally, I would like to thank Ben Dudek for his patience, support, and understanding 

during the last two years.  

 

 

 

 

 

 



v!!

TABLE OF CONTENTS 

CHAPTER 1: Morphological Changes in American Kestrels (Falco sparverius) Suggest 

Multiple Causes Contribute to Widespread Population Declines. 

 Abstract …………………………………………………………………….……..1 

 Introduction ………………………………………………………………….……2 

 Methods ………………………………………………………………………….. 6 

 Results …………………………………………………………………………...10 

 Discussion ……………………………………………………………………… 12 

 Acknowledgments………………………………………………………………. 18 

 References ……………………………………………………………………… 19 

 Multimedia Objects 

  Table 1. List of Possible Causes for Decline…………………………… 24 

  Figure 1. American Kestrel Life Cycle ………………………………… 25 

  Figure 2. Map of Migration Sites and Flyways ………………………... 26 

  Figure 3. RpH, Mass, and Wing Chord Graphs of Trends.…………….. 27 

  Figure 4. Trends in Fat Scores Over Time ……………………………... 28 

  Table 2. Summary of Population Decline ……………………………… 29 

Table 3a. Summary of Mass and Wing Chord Change ............................30 

Table 3b. Summary of Mass or Wing Chord Change From Models with  

Two-way Interaction………………………………………......... 31 

  Table 4. Summary of Wing Pit Fat Change…………………………….. 32 

   

 



vi!!

Table 5. Model List per Site for RpH, Mass,  

Wing Chord and Wing Pit Fat…………………………………………   33 

  Appendix………………………………....…………………………….   34 

  Table S1: Size Parameters ......................................................................  34 

  Table S2: Breakpoint Slopes ..................................................................   35 

  Table S3: Output Tables from Models 

   A. Cape May Point, NJ................................................................. 36 

   B. Hawk Mountain Sanctuary, PA................................................ 37 

   C. Hawk Ridge Bird Observatory, MN........................................ 38 

   D. Manzano Mountains, NM........................................................ 39 

   E. Goshute Mountains, NV........................................................... 40 

   F. Lucky Peak, ID......................................................................... 41 

   G. Golden Gate Raptor Observatory, CA..................................... 42 

  

CHAPTER 2: Geographic Variation in Morphology of the American Kestrel (Falco 

sparverius) Across North America.  

 Abstract ……………………………………………………………………….... 43 

 Introduction …………………………………………………………………...... 43 

 Methods ………………………………………………………………………… 46 

 Results ………………………………………………………………………….. 47 

 Discussion ……………………………………………………………………… 49 

 Acknowledgments………………………………………………………………. 52 

 References ……………………………………………………………………… 52 



vii! !

Multimedia Objects 

  Table 1. Mass and Wing Chord ANOVA ……………………………… 56 

Table 2. Summary of Mass and Wing Chord Means.............…………..  57 

Table 3. Summary of Tukey HSD Mass Results……………………….. 58 

  Table 4. Summary of Tukey HSD Wing Chord Results……….……….. 59 

  Table 5. Mass and Wing Chord Longitudinal Differences…...………… 60 

Table 6. Summary of Tukey HSD Wing Loading Results……….…….. 61  

Figure 1. Mass, Wing Chord, Sexual Size Dimorphism Averages..…… 62 

  Figure 2. Wing Chord vs. Longitudinal Differences …………………... 63 

  Figure 3. Wing Loading Boxplot .......................................…………….. 64 

 !
!



!

!

1!

Chapter 1: Morphological Changes in American Kestrels (Falco sparverius) 

Suggest Multiple Causes Contribute to Widespread Population Declines. 

 

ABSTRACT 

Many American kestrel (Falco sparverius) populations are declining across North 

America. Potential causes include mortality from West Nile Virus, anticoagulant 

rodenticide exposure, climate change, an increase in avian predators, habitat degradation, 

and reduction in food availability. We analyzed American kestrel count and banding data 

from seven raptor migration sites throughout North America with at least 20 years of 

migration data. We used count data to determine the year at which the kestrel population 

began a significant decline and then used banding records to determine whether body 

mass and wing chord declined after this point. We found reductions in mass at five sites 

and wing chord at four sites. We also assessed wing pit fat for two sites, and this metric 

of energy reserves declined at one site and increased at another site. Our results indicate 

declines in body size at the majority of sites are consistent with the hypotheses that food 

availability, change in climate, predation risk, or increases in the use of anticoagulant 

rodenticides are causing population declines. In contrast, the sites that do not show 

significant trends in body size could indicate that West Nile virus is contributing to 

population declines.
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INTRODUCTION 

Raptors are top predators that are vulnerable to environmental change because 

they often occur at low densities, have low reproductive rates, and establish large home 

ranges (Bildstein 2001; Hoffman & Smith 2003). In addition, direct threats from humans 

include habitat loss, shooting, poisoning, electrocution, and collisions with wind turbines, 

vehicles and windows (DeLong 2000). Not surprisingly populations of many raptor 

species are declining and subsequently are of conservation concern, including Peregrine 

falcons (Falco peregrinus), Bald eagles (Haliaeetus leucocephalus), Swainson’s hawks 

(Buteo swainsoni), and Osprey (Pandion haliaetus) during the last half-century (Cade et 

al. 1988; Bednarz et al. 1990; Hoffman & Smith 2003; McCarty & Bildstein 2005; 

Farmer & Smith 2009). Although some declining species have recovered due to intensive 

reintroduction programs, habitat protection, and efforts to limit direct threats, other 

species, including the American kestrel (Falco sparverius), are showing more recent 

declines (Farmer & Smith 2009). 

American kestrels (hereafter referred to as kestrels) are the smallest North 

American falcon and are widely distributed across North America. Kestrels forage on a 

wide variety of small prey, including insects, lizards, birds, and mammals (Smallwood & 

Bird 2002). To take advantage of seasonal prey abundances, most kestrel populations 

migrate south of their breeding range for the winter (Smallwood & Bird 2002). Migration 

is an energetically expensive undertaking, and raptors frequently use thermals and 

orographic lift along prominent ridges and coastlines to save energy, generating 

concentration points where many raptors pass through particular sites each year 

(Kerlinger 1989; Bohrer et al. 2012). 
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Count sites and banding stations have been established at migration concentration 

points throughout North America to allow long-term monitoring of migratory raptors 

(Bildstein 2001; Hoffman & Smith 2003; McCarty & Bildstein 2005). The data collected 

from these sites provide inexpensive censuses of raptor populations critical to 

understanding and monitoring raptor populations at a broad scale. Such count data 

reflected Bald eagle and Peregrine falcon declines caused by DDT-induced egg shell 

thinning, as well as subsequent population recoveries after DDT was restricted from use 

in North America (Bednarz et al. 1990). Raptor banding at these sites also provides 

morphometric and health (fat stores) information about birds, along with longevity, 

survivorship and movement data when a banded bird is recaptured or recovered 

(Hoffman et al. 2002; DeLong & Hoffman 2004). 

Fall migration counts and Breeding Bird Surveys (BBSs) show substantial and 

widespread declines in kestrel populations throughout North America (Farmer & Smith 

2009; Sauer et al. 2014). We pooled two to four decades of banding data from seven sites 

across the continent to test for long-term changes in body size and energy stores that 

might accompany observed population declines. Our objective was to compare observed 

patterns of body size change with patterns of body size change that should be seen given 

potential sources of population declines (Table 1). Where observed patterns do not match 

the predicted patterns, we can infer that those potential causes of decline are not likely the 

main source of decline for kestrels. 

Potential causes for kestrel declines include mortality from West Nile virus 

(WNV), anticoagulant rodenticide exposure (hereafter referred to as rodenticides), 

changes in climate, an increase in avian predators, loss of habitat, and decline in food 
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availability (Table 1; Smallwood et al. 2009). Although numerous bird species have been 

affected by WNV since 1999 throughout North America, it is unlikely to be causing long-

term kestrel declines because northeastern kestrel populations began to decline prior to 

the arrival of WNV (Farmer & Smith 2009). There is currently little evidence that WNV 

affects smaller or larger kestrels more severely, and thus if WNV is causing population 

declines in kestrels, there should not be a concomitant decline in body size. 

Anticoagulant rodenticides negatively effects populations of raptors that forage on 

small mammals (Murray 2011; Rattner et al. 2011; Stansley et al. 2014). There is little 

information about how rodenticides influence body size, but Barn owl (Tyto alba) 

nestlings in areas where rodenticides were deployed grew to smaller sizes and had shorter 

wing chords than nestlings in control areas (Naim et al. 2010). Thus, sublethal 

rodenticide poisoning could potentially affect the size of kestrels as well, generating a 

parallel decrease in body size as populations decline. 

In North America, wing lengths have been getting larger on the West coast but 

smaller in the East (Van Buskirk et al. 2010; Goodman et al. 2011). The link between 

wing length and climate in these studies is correlational, but overall this suggests that no 

consistent pattern of body size change should arise if climate is the direct cause of 

population declines. It is also unclear how population declines in kestrels would be linked 

directly to climate, such that effects of temperature per se, might be inconsistent as well. 

Indirectly, changes in climate could alter the availability of prey (see below). 

Avian predators such as Cooper’s hawks (Accipiter cooperii) and Peregrine 

falcons could have a negative impact on kestrel populations and have an effect on kestrel 

body size. Cooper’s hawk populations have been steadily increasing in urban 
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environments in the last decade (Fish 2003; Stout & Rosenfield 2010). After the ban of 

DDT use and successful large-scale reintroduction programs, Peregrine falcon 

populations began to steadily increase throughout North America (Cade et al.1988; 

Bildstein 2001). Cooper’s hawks and Peregrine falcons will feed on a variety of prey, but 

birds make up a majority of their diets (Storer 1966; White et al. 2002; Ellis et al. 2004; 

Curtis et al. 2006). Few studies have analyzed prey remains in Cooper’s hawk and 

Peregrine falcon nests, and very few kestrels have been taken as prey (Storer 1966; Ellis 

et al. 2004). However, an increase in avian predators may put stress on kestrel 

populations, causing body size selection (Scharf et al. 2000). Selecting for body size 

could drive kestrel body size to increase or decrease over time.  

Shortages of food would generate both a decline in populations and a decline in 

body size through time. Food availability is important in all aspects of the kestrel life 

cycle, from reproduction, nestling growth, fledgling success and into adult life. Survival 

during migration depends on acquiring sufficient food during different periods of the year 

(Figure 1; Sillett & Holmes 2002; DeLong & Hoffman 2004). Food shortages during 

reproduction and development would lead to smaller eggs, and nestlings or fledglings 

that have a lower mass (Martin 1987). Food shortages during migration would not likely 

generate a decline in body size along with declines in abundance because kestrels are 

fully grown during migration. Instead, shortages of food during migration might be 

reflected in lowered fat stores, which reflect more short-term variation in foraging (King 

1972; Blem 1980). Thus, if food availability during migration were a causal factor in 

generating population declines, we would expect to see lowered fat stores through time. 
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It is not clear which, if any, of these forces are causing kestrel declines. Here we 

investigate if changes in populations are accompanied by changes in morphology using 

long-term continent-wide data collected from fall migration banding stations. If kestrels 

are not declining in body size, this would suggest that rodenticides and changes in food 

are not the cause, but WNV, predators, and climate effects could still be at play. If 

kestrels are increasing in body size, this would only be consistent with predators and 

climate effects as causes of the declines. If kestrels are declining in body size, this would 

be consistent with rodenticide use and food shortages, but could also be seen if predators 

and climate effects are the cause of declines. Thus, although there are no clear-cut 

contrasts that can firmly rule out all of the potential causes, changes in morphology can 

help narrow the field of potential causes. If we can narrow the focus of reasons affecting 

population decline, we can begin to help kestrel populations recover. 

 

MATERIALS AND METHODS 

Study Sites 

We collected migration count and morphometric data for kestrels observed and 

banded at seven raptor fall migration sites across North America over a 20-40 year period 

(Figure 2). The sites represent most of the different flyways that occur across North 

America, including the Atlantic, Mississippi, Southern Rocky Mountain, Intermountain, 

and Pacific flyways (Figure 2). Migration data were collected at sites run by Cape May 

Raptor Banding Project at Cape May Point, New Jersey (39°56´N, 74°57´W; Farmer & 

Smith 2009), Hawk Mountain Sanctuary near Kempton, Pennsylvania (40°40´N, 

75°55´W; Viverette et al.1996), Hawk Ridge Bird Observatory in Duluth, Minnesota 
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(46°51´N, 92°02´W; Evans et al. 2012), HawkWatch International at the Manzano 

Mountains in central New Mexico (34°42´N, 106°25´W; DeLong 2006) and the Goshute 

Mountains in eastern Nevada (40°25´N, 114°16´W; (DeLong & Hoffman 1999), 

Intermountain Bird Observatory at Lucky Peak near Boise, Idaho (43°36´N, 116°04´W, 

Farmer & Smith 2009), and the Golden Gate Raptor Observatory (GGRO) in the Marin 

Headlands, California (37°49´N, 122°29´W; Hull et al. 2010). 

Data collection 

We used raptors per hour (RpH; the total number of birds counted divided by the 

total observation hours each year) to assess kestrel population trends through time. 

Although the data collection procedures vary slightly between sites, procedures are 

standardized within each site giving a robust index of kestrel population sizes each year 

(Hoffman & Smith 2003; Farmer et al. 2007; Hull et al. 2010; Evans et al. 2012). 

Kestrels were trapped at the different sites using similar trapping procedures. A 

combination of bow nets, mist nets, or dho-gaza nets were used to capture raptors, and 

non-native avian species such as rock pigeons (Columba livia), Eurasian collared doves 

(Streptopelia decaocto), house sparrows (Passer domesticus), and European starlings 

(Sturnus vulgaris) were used as lures. Kestrels were fitted with a uniquely numbered, 

U.S. Geological Survey aluminum leg band (Hoffman et al. 2002). 

Kestrels were sexed and aged by plumage (Smallwood 1989; Clark & Wheeler 

2001). Males have slate-blue wings and females have reddish brown wings. Females can 

be aged by the size of the subterminal band on their tail. The adult female subterminal 

band is ~1.75 times wider than the next dark band on their feathers, whereas the juvenile 

subterminal bands are less than 1.75 times the next dark band on their feathers 
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(Smallwood 1989). Hatching-year females were termed “juvenile” and AHY (After 

hatching-year), SY (Second year) and ASY (After second year) females were grouped 

together as “adult”. Due to difficulties and inconsistences in aging males during 

migration, all males were assigned as “unknown” age for this analysis. We used a 

combined age/sex category that included juvenile females, adult females, and males. At 

Lucky Peak and Hawk Mountain Sanctuary, however, the majority of female kestrels that 

were captured were of unknown age so all females were assigned “unknown” at these 

sites. 

Birds were weighed to the nearest gram and a standard ruler was used to measure 

wing chord to the nearest millimeter. Body mass and wing chord are both measures of 

overall body size, but wing chord is relatively fixed after feather growth ceases, except 

for minor wear, while body mass can vary through time to a greater extent. In addition to 

genetic effects, wing chord reflects energetic conditions of a bird while the feather is 

growing, while body mass reflects energetic conditions during nestling growth and 

through time after the bird stops growing. Kestrels that had food in their crops equivalent 

to being about half full or fuller, were not included in the analysis (approximately 300) 

because the crop contains undigested material such as bones, feathers, and fur, which 

would cause overestimation of the mass of the bird. If individuals were recaptured at the 

original banding location within the same banding season, we only used the initial mass 

and wing chord measurements in the analysis. Distributions of mass and wing chord were 

analyzed to identify and remove major errors in measurements of mass and wing chord. 

Birds with mass and wing chord measurements greater than 3 standard deviations (SD) of 

the mean mass and wing chord for each sex were excluded from the analysis due to the 
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high likelihood that these measurements were incorrectly recorded, and eliminated 

approximately 250 individuals out of a sample size of about 16,300. 

Wing pit fat is a good proxy for total body fat in raptors (DeLong & Gessaman 

2001). At the Manzano Mountain and Goshute Mountain sites, wing pit fat scores were 

assigned with a 4-point scoring technique (DeLong and Hoffman 2004). A score of 0 was 

for kestrels with no visible fat, 1 for birds with a shallow streak of fat, 2 for birds with fat 

that was approximately flush with surrounding muscle tissue, and 3 for birds with fat that 

exceeded the depth of the surrounding muscle tissue. 

Statistical Analysis 

Data were analyzed by site due to regional differences in kestrel body size and 

wing chord (Table S1). We used a breakpoint regression for RpH against year to identify 

when populations switched from a period of stable or increasing population size to a 

statistically significant decline. Once the breakpoint year was determined, we subset the 

data into “before” and “after” datasets, with the before dataset covering the initial period 

of stable or increasing population size and the “after” dataset covering the period of 

recent population decline (Table S2). 

We then used linear regression to determine whether the mass and wing chord 

length of the kestrels changed over time after declines began. A global model was 

developed for each site for the periods before and after the breakpoint year, or the whole 

time-period if there was no breakpoint. Predictor variables included year, Julian date 

(JD), a combined age/sex class (SA), and all two-way interactions. SA was included 

because kestrels differ by sex in size and morphology. We included Julian date in the 

analyses because later migrating raptors may have higher fat and protein reserves than 
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earlier migrating birds (Gessaman 1979; DeLong 2006). We used backward model 

selection with the ‘drop’ function to remove non-significant predictor variables and 

obtain a minimum model. We carried out all statistical analyses in R version 3.1.2 (R 

Core Development Team 2014) and package ‘Segmented’ for the breakpoint regressions 

(Muggeo 2003; Muggeo 2008). 

We used linear regression to assess changes in wing pit fat scores through time for 

the Goshute Mountains and the Manzano Mountains sites. These data were available for 

shorter periods of time, from 1993 to 2013 in the Manzano Mountains and 1992 to 2014 

in the Goshute Mountains. As before, we developed a global model for each period 

before and after the breakpoint year. The response variable was wing pit fat and the 

predictor variables were year, SA, JD, and two-way interactions between year and SA, 

and JD and SA. We used the same breakpoint year described earlier to subset the data 

and then used backward model selection to drop non-significant terms. 

 

RESULTS 

Population declines 

The rate of raptor passage (RpH) significantly declined at all seven migration sites 

during the last decade, with some sites showing declines for much longer periods (Table 

2; Figure 3). Declines in RpH ranged across sites from 12.6% to 42.7 % per ten years 

(Table 2). Cape May, Hawk Mountain, and Lucky Peak did not show a breakpoint in 

their population trends, with declines evident during the entire period analyzed. 
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Mass 

During the periods when RpH declined significantly, mass also declined 

significantly at most sites (Table 3a). In some cases, mass declined significantly for all 

age and sex groups, and in other cases only certain classes declined. The mass of juvenile 

females, adult females and males declined significantly at Cape May, Hawk Mountain, 

Goshute Mountains and Lucky Peak. The declines in kestrel mass over a period of 10 

years ranged from 0.7% to 2.4% of their average mass, which corresponds to 1 g to 2.7 g 

decrease in mass (Table 3a). Juvenile females had a significant decrease in mass at 

Goshute Mountains and GGRO. Juvenile female kestrels at the Goshute Mountains lost 

1.3% of their mass or 1.5 g whereas juvenile female kestrels at GGRO lost 0.89% of their 

mass or 1 g during a ten-year period (Table 3b). 

Wing Chord 

At Hawk Ridge, Manzano Mountains, Goshute Mountains, and Lucky Peak, wing 

chord declined from 0.2% to 0.7%, or 0.4-1.2 mm, per ten years across sites (Table 3a). 

At Cape May, wing chord did not decline significantly overall but juvenile female wing 

chords showed a decline of 0.52% of wing chord, or ~1 mm per ten years. 

Wing Pit Fat 

At Manzano Mountains, there was a non-significant increasing trend in fat scores 

before the breakpoint, and after the breakpoint year, wing pit fat increased significantly 

(Table 4). At the Goshute Mountains, wing pit fat showed a non-significant decreasing 

trend before the breakpoint and a significant decline after the breakpoint, at a rate 5-6% 

per ten years (Table 4). 
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DISCUSSION 

Migration counts and breeding bird surveys have documented declines in kestrel 

populations beginning in the mid 1990s (Sauer et al. 2014; Farmer & Smith 2009). Our 

results show that in addition to population declines, kestrels are showing declines in body 

size and wing morphology at the majority of migration sites we analyzed. Kestrel mass 

has systematically been decreasing by about a gram or more per decade at five of the 

seven migration sites across North America, and wing chord has been decreasing by 0.4 

mm to 1 mm per decade at four of seven migration sites. 

Birds undergo significant changes in body mass, and both fat and non-fat tissue, 

throughout their annual life cycle (Lindström & Piersma 1993). The ability to accumulate 

pre-migratory fat reserves is important for migrating birds because it allows them to store 

energy needed while on migration when foraging might be limited (King 1972; Blem 

1980; DeLong & Gessaman 2001; Delong & Hoffman 2004). We observed a decrease in 

wing pit fat over time in kestrels migrating through the Goshute Mountains, whereas fat 

stores increased for kestrels moving through the Manzano Mountains. These results 

suggest that it is not primarily migration-season food availability driving wide-spread 

declines, although declines in energy stores may play a role in survival or migration 

strategies for birds migrating through the Goshute Mountains. 

The kestrel population at Hawk Ridge Bird Observatory and the Manzano 

Mountains did not show significant changes in the trends of mass throughout time. Our 

first hypothesis, that kestrel decline was due to mortality from West Nile virus, could 

explain the population decline at Hawk Ridge. From our population analysis, we 

determined that kestrel populations declined in 2002 at Hawk Ridge, which is consistent 



!

!

13!

with when WNV entered North America (Reisen 2013). In contrast, our results from 

Manzano Mountains do not support the WNV hypothesis. From our breakpoint analysis, 

we determined the population began declining in 1996, which is well before the arrival of 

WNV in North America.!

Rodenticide poisoning, climate change, avian predators, food availability and loss 

of habitat, cannot be ruled out as possible causes for kestrel decline at the Cape May, 

Hawk Mountain, Manzano Mountains, Goshute Mountains, Lucky Peak, and Golden 

Gate Raptor Observatory sites. These factors would have a negative effect on kestrel 

populations as well as an effect on body size. The secondary effects of rodenticide 

poisoning have recently gained more attention and further studies are needed to 

understand their sublethal effects. Raptors are relatively sensitive to anticoagulants, and 

can die from secondary poisoning (Rattner et al. 2011), and body size is stunted when 

young are exposed to rodenticides (Naim et al. 2010). However, further research is 

needed to determine if the nestlings that survive exposure to rodenticides (if any), and go 

on to produce smaller young. 

Other factors that affect body size, such as climate change, food availability, and 

changes in habitat, are related and we analyzed the changes in size likely as a result of a 

combination of these hypotheses. We specifically focused on how food availability could 

be the main driver of decline. Changes in morphology can be expected if food availability 

is contributing to the declines, as resource availability affects clutch number, egg size and 

quality, nestling growth rate, fledgling success and survival, and the effects would be 

reflected in an overall decrease in body size over time (Martin 1987; Lindström 1999). 

Declines in food availability could affect kestrels during any time of the year (Figure 1, 
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Segment A; Dawson & Bortolotti 2000). During egg production, energy and nutrients are 

required for the female to produce eggs and provision them with energy. The larger the 

caloric density of the eggs, the larger and more well-developed a young kestrel will be 

when it hatches (Martin 1987). Incubation of the young can be energetically costly 

because the more time a female spends on a nest, the less time she has to forage. A 

heavier and better-fed female should be able to sustain the loss of more weight during 

incubation, which would allow her to spend more time on the nest and increase nestling 

survival (Martin 1987). Kestrel clutches hatch asynchronously, creating a size difference 

among nestlings resulting in the last nestling being the smallest in size. When food is 

limited, the last hatched bird may not survive, reducing the brood size; this may however 

free up resources for the remaining young, potentially allowing the remaining nestlings to 

survive. Nestling growth depends on food provisioning (Dawson & Bortolotti 2000), and 

young birds reach their full structural size about a month after hatching. Better-fed 

fledglings will be larger, stronger, and more successful at hunting and preparing for fall 

migration, enabling higher survival (Dawson & Bortolotti 2000). In short, because food 

availability during the breeding season influences both growth and survivorship, declines 

in population size that are caused by lower food availability would likely be accompanied 

by declines in body size and we see this at the majority of study sites. 

Factors such as climate and land-use change could cause decreases in food 

availability. Drought has been prevalent in the interior west of North America during a 

substantial portion of the kestrel declines (Hoffman & Smith 2003; Farmer & Smith 

2009). Hoffman and Smith (2003) suggested that as drought has increased, raptor hunger 

levels and mortality have also increased in these regions. Changes in land-use also may 
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be affecting the habitat structure in areas where kestrels hunt. Many northeastern 

farmlands have been reforested or developed, replacing open foraging habitats with 

forests or suburban land cover (Farmer & Smith 2009). Changes in landscape provide 

fewer nesting sites and foraging locations and potentially fewer opportunities for 

migration stopovers (Farmer & Smith 2009). Thus, changes in climate and land-use could 

be the cause of decreased resource supply, impacting kestrel growth and survival. 

Alternatively, behavioral changes in response to warming or change in precipitation 

could alter access to food resources. For kestrels, variation in weather may affect food 

availability and parental provisioning behavior (Dawson & Bortolotti 2000). In one 

study, young kestrels that were exposed to inclement weather were smaller, lighter, and 

less likely to survive to fledgling stage than those that were raised in better weather 

conditions (Dawson & Bortolotti 2000). The results suggest it may not be food 

abundance per se driving lower food intake, but potentially also food availability or 

behavioral changes that limit provisioning rates. 

Other studies in Europe and North America have shown long-term changes in 

body size for other birds and have attributed these changes to changes in climate and food 

availability. The body size of Danish goshawks (Accipiter gentilis) was examined in 

museum specimens collected between 1854 and 1941 and between 1979 and 1998. In 

these birds wing chord, tarsi length and bill size decreased over time and the trends were 

linked to changes in diet because the decrease in body size was not uniform across age 

and sex class and immature birds were more affected than adults. Similarly, a study of 

passerines in western Pennsylvania from 1961 to 2006 showed that fat-free mass and 

wing chord were steadily decreasing over time (Van Buskirk et al. 2010). In contrast, 
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wing chord and mass for a wide variety of passerine species at two sites in central 

California over 3-4 decades steadily increased over time, although not all changes were 

significant for all species (Goodman et al. 2011). Studies by Goodman et al. (2011) and 

Van Buskirk et al. (2010) both show changes in body size of a similar magnitude but in 

different directions. Changes in body size in both studies have been attributed to a 

changing climate, but Goodman et al. (2011) note that different biomes will respond 

differently to climate change because warming and changes in precipitation in mesic and 

arid environments may have different effects on body size. Our analysis is continental in 

scope, and we see changes in morphology at sites in different directions, which could 

suggest that the breeding areas from which migrants originate are responding differently 

to climate change, and also suggests different factors are driving population declines. 

Although migration counts have clearly documented population declines in 

migratory raptors in the past, current declines and body size changes also could reflect 

shifting migratory patterns or migratory short stopping – when birds migrate shorter 

distances when conditions are good. Migratory short stopping could contribute to the 

pattern of fewer birds being counted at migration sites. For example, population declines 

were recorded in sharp-shinned hawks (Accipiter striatus) in the 1980s and 1990s in 

eastern North American, at Cape May Point and Hawk Mountain Sanctuary (Viverette et 

al. 1996). Band recovery data and CBS data indicate, however, that there was a 

significant increase in the number of birds observed north of the two sites over time, 

suggesting that sharp-shinned hawks in eastern North America may not be migrating as 

far as they once did. Food availability is known to influence migration distances 

(McClelland et al. 1994), altering distances or changing patterns and flyways. So, 
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changes in food resources could be altering how far kestrels migrate. However, evidence 

for kestrel declines also comes from Breeding Bird Surveys (Sauer et al. 2014) and 

Christmas Bird Counts (Sauer et al. 1996b), indicating that short-stopping is an unlikely 

cause of reduced numbers of kestrels seen at migration sites. 

Declines in kestrel body size do not necessarily imply a maladaptive change in 

phenotype. Indeed, body size is highly plastic and subject to rapid evolution, and theory 

suggests that body size may shift as an adaptive response to resource supply (DeLong 

2012). For example, smaller animals require less food than larger animals and thus may 

be able to survive longer at lower food densities (Kooijman 1986). Smaller size may also 

make migratory travel less costly. Falcons predominately use flapping flight instead of 

soaring behavior during migration (Fuller et al. 1998; Dunne et al. 2012). Falcons will 

forage while flying and if they are able to do so during migration, they may be able to 

migrate faster because they do not have to stop to refuel. In general, flapping flight 

performance improves as body size decreases, suggesting that smaller birds would not 

have to feed agration and could migrate to wintering or spring grounds more quickly than 

larger birds (Hedenstrom & Alerstam 1998; La Sorte et al. 2013).  

In addition to changing how far they migrate, kestrels could be migrating earlier 

or later. For example, in 2011 at Manzano Mountains, the average median passage date 

for all raptor species was 10 days later than the median passage date from 1985-2010 

(Mika et al. 2011). Changes in the growing season could be driving shifts in seasonal 

food and resource availability. Such changes could influence the mass of kestrels during 

migration because kestrels migrating later would be heavier, so banding stations would 

be catching heavier and older birds. We accounted for this possible variation by including 
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Julian date in our analysis, such that any shift in migration timing would not influence 

our results. 

The American kestrel might be the next canary in the coalmine, reflecting 

widespread changes in climate and habitat quality that may affect many avian species. 

Analyzing regional climate data during the fall migration season would be able to give us 

a better understanding of how temperature change might affect migration patterns and 

food availability. More research on West Nile virus is needed in the region around the 

Great Lakes, where Hawk Ridge Bird Observatory is located, to understand the impacts 

on kestrels specifically. More research is needed on the impacts of increasing populations 

of Cooper’s hawks and Peregrine falcons in regions where there is overlap with kestrel 

populations. Also, there has not been a comprehensive study on prey remains in Cooper’s 

hawk nests and this research could provide insight into why kestrel populations are 

declining. We suggest that efforts to understand how kestrel breeding and foraging 

behaviors change in response to climate and land-use changes are crucial to understand 

the mechanisms of kestrel declines, and how and whether we need to take steps to ensure 

that kestrels remain common. 
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Table 1. List of potential causes of American kestrel declines and the effect each 

potential cause could have on population and body size. Up and down arrows indicate 

positive and negative effects, respectively. Circle indicates no effect, and question mark 

indicates that effect is unknown. 

 

Potential!cause!for!decline! Effect!on!population! Effect!on!body!size!

West!Nile!Virus! ↓! ⦰!

Rodenticide!poison! ↓! ↓!

Climate! ?! ↓↑!

Predators! ↓! ↓↑!

Food/habitat!decrease! ↓! ↓!
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Figure 1. A. Food needed during breeding season affects the number of eggs in a clutch, 

the growth of nestlings, and fledgling success. B. Available food during fall migration 

influences fat reserves, mass, and survival during spring migration. 
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Figure 2. Fall migration station locations (black dots). The major raptor flyways from 

west to east (shaded areas): A. Pacific Coast, B. Intermountain, C. Southern Rocky 

Mountain, D. Mississippi, E. Atlantic Coast.!!
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Figure 3. RpH (row 1), mass (row 2), and wing chord (row 3) graphs during period of population decline with 95% confidence 

intervals. Columns A-E are sites as follows: A: Cape May Raptor Banding Project, NJ. B: Hawk Mountain Sanctuary, PA. C: Hawk 

Ridge Bird Observatory, MN. D: Manzano Mountains, NM. E: Goshute Mountains, NV. F: Lucky Peak, ID. G: Golden Gate Raptor 

Observatory, CA. Row 1: RpH, 2: Mass (g), 3: Wing Chord (mm). Unknown males represented by a solid line, juvenile females 

represented by a dotted line, adult females represented by a dotted line with 95% confidence intervals.  
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Figure 4. Change in average wing pit fat score at the (A) Manzano Mountains and (B) 

Goshute Mountains with 95% confidence intervals.  
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Table 2: Summary of sites, years available, and declines for seven sites across North 

America. Years refer to the span of time for which both banding and count data were 

available. Year declines detected are the beginning of the data window, if declines were 

apparent the entire time or the beginning of the decline as detected by breakpoint 

regression (see text).  

 

Site Years Year declines 
detected 

Decline % per 
10 yrs 

Decline p-
value 

Cape May 1976-
2015 1976 20.2% <0.001 

Hawk Mountain 1979-
2015 1979 12.6% <0.001 

Hawk Ridge 1972-
2015 2000 37.5% <0.006 

Manzano Mountains 1985-
2014 1996 38.7% <0.001 

Goshute Mountains 1983-
2014 1997 42.7% <0.001 

Lucky Peak 1994-
2015 1994 20.6% 0.001 

Golden Gate Raptor 
Observatory 

1989-
2015 2002 35.7% 0.001 
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Table 3a. Summary of changes in mass (g) and wing chord (mm) from seven sites, during 

periods of decline determined by the breakpoint regression. (*) indicates that the model 

included a two way interaction. See Table 3b. for output tables. 

 

 Mass changes per 10 years Wing chord changes per 10 
years 

Site Years Slope 
g/yr % Gram p-val Slope 

mm/yr % mm p-val 

Cape 
May 

1969-
2014 -0.11 

0.8% 
-

0.9% 
1 g <0.001 -0.03 0.1% - 

0.4% 

0.3 - 
0.7 
mm 

0.4* 

Hawk 
Mt. 

1979-
2014 -0.3 

2.2% 
- 

2.4% 
2.7 g 0.01 -0.01 0.04% 0.08 

mm 0.9 

Hawk 
Ridge 

2000-
2014 0.08 

0.6% 
- 

0.7% 
0.7 g 0.34 0.14 0.7% 1.2 

mm 0.009 

Manzano 
Mts. 

1996-
2014 -0.12 0.9% 

-1% 1.1 g 0.09 -0.09 0.5% 0.9mm 0.04 

Goshute 
Mts. 

1997-
2014 -0.17 

1.3% 
- 

1.5% 
1.5 g <0.0002* -0.06 0.3% 0.5 

mm 0.03 

Lucky 
Peak 

1994-
2015 -0.10 

0.7% 
- 

0.8% 
.9 g 0.0002 -0.04 0.2% 0.4 

mm 0.008 

GGRO 2002-
2015 -0.11 0.9% 

- 1% 1 g 0.12* 0.09 0.4% 0.8mm 0.09 
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Table 3b. Summary of changes in mass or wing chord from models with a two way 

interaction after the breakpoint regression with change in size as percent and 

measurement.  

 

Site Mass or WC Interaction Slope % Size change p-val 

Cape May Wing Chord Year: J F -0.08 mm/yr 0.52 1 mm 0.02 
Goshute Mts. Mass J F: Julian Date -0.18 g/yr 1.3 1.5 g 0.006 

GGRO Mass J F: Julian Date -0.13 g/yr 0.89 1 g 0.02 
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Table 4. Summary of changes in wing pit fat output table after the determined breakpoint 

with slope, p-value and the change in score per 10 year interval. 

 

Site Years Slope Score Change p-val 

Manzano Mts. 1996-2013 0.03 0.23 0.0008 

Goshute Mts. 1997-2014 -0.008 0.08 0.03 
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Table 5. Model used for each site for RpH, mass, wing chord, and wing pit fat (Manzano 

Mountains and Goshute Mountains only) during the period of decline. 

  
Site Response After 

Cape May 

RpH lm(RpH ~ Year) 

Mass lm(Mass ~ Year + Age + Julian Date) 

Wing Chord 
lm(Wing Chord ~ Year + Age + Year*Age + 

Julian Date) 

Hawk Mt. 

RpH lm(RpH ~ Year) 

Mass lm(Mass ~ Year + Sex) 

Wing Chord lm(Wing Chord ~ Year + Sex) 

Hawk Rd 

RpH lm(RpH ~ Year) 

Mass lm(Mass ~ Year + Age) 

Wing Chord lm(Wing Chord ~ Year + Age) 

Manzano Mts. 

RpH lm(RpH ~ Year) 

Mass lm(Mass ~ Year + Age + Julian Date) 

Wing Chord lm(Wing Chord ~ Year + Age) 

Fat lm(Wing Fat ~ Year + Age + Julian Date) 

Goshute Mts. 

RpH lm(RpH ~ Year) 

Mass 
lm(Mass ~ Year + Age + Julian Date + 

Age*Julian Date) 

WC lm(Wing Chord ~ Year + Age) 

Fat lm(Wing Fat ~ Year + Age + Julian Date) 

Lucky Peak 

RpH lm(RpH ~ Year) 

Mass lm(Mass ~ Year + Sex) 

WC lm(Wing Chord ~ Year + Sex + Julian Date) 

GGRO 

RpH lm(RpH ~ Year) 

Mass 
lm(Mass ~ Year + Age + Julian Date + 

Age*Julian Date) 

WC lm(Wing Chord ~ Year + Age + Julian Date) 
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Appendix (Supporting Information) 

Table S1: Size parameters for each site using 3 SD from the mean mass, mean wing 

chord, Julian dates, and sample size for each migration season.  

 

  Mass Wing Chord  

Site Julian Date Male Female Male Female n 

Cape May 226-302 80-140 88-147 163-200 170-207 5194 

Hawk Mt. 243-301 80-135 85-140 170-210 172-210 101 

Hawk Ridge 227-319 80-135 85-140 170-210 175-213 1750 

Manzano Mts. 227-319 85-125 90-137 175-200 180-210 616 

Goshute Mts. 227-319 80-130 82-142 170-210 175-213 3201 

Lucky Peak 226-302 80-130 90-155 163-210 175-215 3012 

GGRO 213-344 80-135 90-140 170-200 175-217 1265 
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Table S2. Slope of RpH before and after determined breakpoint with standard errors, t-

values, upper and lower 95% confidence intervals for Hawk Ridge, Manzano Mountains, 

Goshute Mountains, Golden Gate Raptor Observatory.  

 

Site Breakpoint Estimate SE t-value CI 95 Lower CI 95 Upper 

Hawk Ridge  

 Before 2000 0.077 0.015 5.07 0.046 0.11 

 After 2000 -0.13 0.035 -3.59 -0.2 -0.055 

Manzano Mts.  

 Before 1996 0.012 0.024 0.48 -0.038 0.062 

 After 1996 -0.049 0.011 -4.61 -0.071 -0.027 

Goshute Mts.  

 Before 1997 0.22 0.05 4.44 0.12 0.32 

 After 1997 -0.2 0.034 -5.78 -0.27 -0.13 

GGRO  

 Before 2000 0.032 0.015 2.14 0.00091 0.063 

 After 2000 -0.052 0.017 -3.1 -0.087 -0.017 
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Table S3 A - G. Output tables from models with response variables RpH, Mass, Wing 

chord, estimates, standard errors, t and p values, F-statistic, multiple R-squared, adjusted 

r-squared, f-statics and p-values for each model. Significant p-values are in bold.  

A. Cape May Point, NJ. 

  Term Estimate SE t-value p -value 

RpH 

(Intercept) RpH 872.6 120.0 7.3 <0.0001 
Year -0.4 0.1 -7.2 <0.0001 

F-statistic:   51.62 on 1 and 38 DF 
Multiple R-squared:   0.576 
Adjusted R-squared:   0.5648 
F-statistic:   51.62 on 1 and 38 DF 
p-value:   1.386e-08 

Mass 

(Intercept) Adult Female 312.1 22.0 14.2 <0.0001 
Year -0.1 0.0 -10.1 <0.0001 

Juvenile Female -1.4 0.5 -2.5 0.01 
Male -12.3 0.5 -23.5 <0.0001 

Julian Date 0.1 0.0 11.7 <0.0001 
Residual standard error:  9.015 on 5173 degrees of freedom 
Multiple R-squared:    0.2769 
Adjusted R-squared:    0.2764 
F-statistic:    495.3 on 4 and 5173 DF 
p-value:    < 2.2e-16 

Wing Chord 

(Intercept) Adult Female 252.8 64.4 3.9 0.00009 
Year 0.0 0.0 -0.9 0.36 

Juvenile Female 162.8 67.0 2.4 0.015 
Male 97.6 66.8 1.5 0.14 

Julian Date 0.0 0.0 -3.0 0.003 
Year: Juvenile Female -0.1 0.0 -2.4 0.016 

Year: Male -0.1 0.0 -1.6 0.12 
Residual standard error:  5.163 on 5171 degrees of freedom 
Multiple R-squared:    0.3859 
Adjusted R-squared:    0.3852 
F-statistic:    541.5 on 6 and 5171 DF 
p-value:    < 2.2e-16 
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B. Hawk Mountain Sanctuary, PA. 

  Term Estimate SE t-value p -value 

RpH 

(Intercept) RpH 20.21 4.09 4.94 0.0000 
Year -0.01 0.00 -4.81 0.0000 

Residual standard error:  0.133 on 35 degrees of freedom 
Multiple R-squared:    0.3982 
Adjusted R-squared:    0.381 
F-statistic:    23.16 on 1 and 35 DF 
p-value:    2.823e-05 

Mass 

(Intercept) Female 704.27 225.39 3.12 0.0023 
Year -0.29 0.11 -2.61 0.0104 
Male -10.25 1.90 -5.38 0.0000 

Residual standard error:  9.206 on 99 degrees of freedom 
Multiple R-squared:    0.2415 
Adjusted R-squared:    0.2261 
F-statistic:    15.76 on 2 and 99 DF 
p-value:    1.145e-06 

Wing Chord 

(Intercept) Female 208.67 139.16 1.50 0.137 
Year -0.01 0.07 -0.13 0.898 
Male -6.20 1.18 -5.28 0.000 

Residual standard error:  5.684 on 99 degrees of freedom 
Multiple R-squared:    0.2246 
Adjusted R-squared:    0.2089 
F-statistic:    14.34 on 2 and 99 DF 
p-value:    3.4e-06 
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C. Hawk Ridge Bird Observatory, MN. 

  Term Estimate SE t-vale p-value 

RpH 

(Intercept) RpH 3.03 0.35 8.76 <0.0001 
Year -0.13 0.04 -3.22 0.0062 

Residual standard error:  0.7232 on 14 degrees of freedom 
Multiple R-squared:    0.4252 
Adjusted R-squared:    0.3842 
F-statistic:    10.36 on 1 and 14 DF 
p-value:    0.006191 

Mass 

(Intercept) Adult Female 119.43 1.84 64.85 <0.0001 
Year 0.08 0.08 0.95 0.34 

Juvenile Female -7.56 1.84 -4.11 0.00005 
Male -17.25 1.83 -9.45 0.0000 

Residual standard error:  7.262 on 432 degrees of freedom 
Multiple R-squared:    0.3546 
Adjusted R-squared:    0.3501 
F-statistic:     79.1 on 3 and 432 DF 
p-value:    < 2.2e-16 

Wing Chord 

(Intercept) Adult Female 188.78 1.20 156.92 0.0000 
Year 0.14 0.05 2.64 0.009 

Juvenile Female 1.84 1.20 1.53 0.13 
Male -6.51 1.19 -5.46 0.0000 

Residual standard error:  4.743 on 432 degrees of freedom 
Multiple R-squared:    0.4372 
Adjusted R-squared:   0.4333 
F-statistic:    111.8 on 3 and 432 DF 
p-value:    < 2.2e-16 
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D. Manzano Mountains, NM. 

  Term Estimate SE t-value p-value 

RpH 

(Intercept) RpH 1.33 0.10 13.26 <0.0001 
Year -0.06 0.01 -6.01 0.00001 

Residual standard error:  0.2268 on 17 degrees of freedom 
Multiple R-squared:    0.6799 
Adjusted R-squared:    0.6611 
F-statistic:    36.11 on 1 and 17 DF 
p-value:   1.409e-05 

Mass 

(Intercept) Adult Female 63.70 8.74 7.29 <0.0001 
Year -0.12 0.07 -1.69 0.09 

Juvenile Female -4.42 1.50 -2.95 0.003 
Male -14.23 1.39 -10.25 <0.0001 

Julian Date 0.20 0.03 6.16 <0.0001 
Residual standard error:  6.914 on 469 degrees of freedom 
Multiple R-squared:    0.3517 
Adjusted R-squared:    0.3462 
F-statistic:     63.6 on 4 and 469 DF 
p-value:    < 2.2e-16 

Wing Chord 

(Intercept) Adult Female 198.88 0.98 203.84 <0.0001 
Year -0.10 0.05 -2.11 0.036 

Juvenile Female -1.46 1.02 -1.42 0.16 
Male -9.19 0.96 -9.60 <0.0001 

Residual standard error:  4.769 on 470 degrees of freedom 
Multiple R-squared:    0.383 
Adjusted R-squared:    0.379 
F-statistic:    97.24 on 3 and 470 DF 
p-value:    < 2.2e-16 
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E. Goshute Mountains, NV. 

  Term Estimate SE t-value p-value 

RpH 

(Intercept) RpH 4.15 0.34 12.23 <0.0001 
Year -0.20 0.03 -5.78 0.00003 

Residual standard error:  0.7505 on 16 degrees of freedom 
Multiple R-squared:    0.6765 
Adjusted R-squared:    0.6563 
F-statistic:    33.47 on 1 and 16 DF 
p-value:    2.79e-05 

Mass 

(Intercept) Adult Female 40.68 13.72 2.96 0.003 
Year -0.17 0.04 -3.77 0.00017 

Juvenile Female 41.36 16.62 2.49 0.01 
Male -13.87 14.92 -0.93 0.35 

Julian Date 0.30 0.05 5.57 <0.0001 
Juvenile Female : Julian Date -0.18 0.07 -2.77 0.006 

Male : Julian Date 0.00 0.06 -0.05 0.96 
Residual standard error:  8.049 on 1521 degrees of freedom 
Multiple R-squared:    0.3472 
Adjusted R-squared:    0.3446 
F-statistic:    134.8 on 6 and 1521 DF 
p-value:    < 2.2e-16 

Wing Chord 

(Intercept) Adult Female 196.72 0.48 413.44 <0.0001 
Year -0.06 0.03 -2.16 0.03 

Juvenile Female 0.52 0.49 1.07 0.29 
Male -7.81 0.47 -16.74 <0.0001 

Residual standard error:  5.041 on 1524 degrees of freedom 
Multiple R-squared:    0.402 
Adjusted R-squared:    0.4008 
F-statistic:    341.5 on 3 and 1524 DF 
p-value:    < 2.2e-16 
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F. Lucky Peak, ID. 

  Term Estimate SE t-value p-value 

RpH 

(Intercept) RpH 132.87 34.70 3.83 0.001 
Year -0.07 0.02 -3.77 0.0012 

Residual standard error:  0.5152 on 20 degrees of freedom 
Multiple R-squared:    0.415 
Adjusted R-squared:    0.3857 
F-statistic:    14.19 on 1 and 20 DF 
p-value:    0.001214 

Mass 

(Intercept) Female 320.50 53.70 5.97 <0.0001 
Year -0.10 0.03 -3.71 0.0002 
Male -11.78 0.31 -37.64 <0.0001 

Residual standard error:  8.705 on 3184 degrees of freedom 
Multiple R-squared:    0.3092 
Adjusted R-squared:    0.3088 
F-statistic:    712.6 on 2 and 3184 DF 
p-value:    < 2.2e-16 

Wing Chord 

(Intercept) Female 283.58 31.31 9.06 <0.0001 
Year -0.04 0.02 -2.65 0.0080 
Male -7.45 0.18 -41.23 <0.0001 

Julian Date -0.02 0.01 -2.63 0.009 
Residual standard error:  4.942 on 3183 degrees of freedom 
Multiple R-squared:    0.362 
Adjusted R-squared:    0.3614 
F-statistic:    602.1 on 3 and 3183 DF 
p-value:    < 2.2e-16 
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G: Golden Gate Raptor Observatory, CA. 

  Term Estimate SE t-value p-value 

RpH 

(Intercept) RpH 1.30 0.09 14.26 <0.0001 
Year -0.05 0.01 -4.32 0.0012 

Residual standard error:  0.1788 on 11 degrees of freedom 
Multiple R-squared:    0.6286 
Adjusted R-squared:    0.5949 
F-statistic:    18.62 on 1 and 11 DF 
p-value:    0.001225 

Mass 

(Intercept) Adult Female 86.13 12.89 6.68 <0.0001 
Year -0.11 0.07 -1.54 0.12 

Juvenile Female 30.65 13.88 2.21 0.03 
Male 6.24 13.60 0.46 0.65 

Julian Date 0.12 0.05 2.34 0.02 
Juvenile Female : Julian Date -0.13 0.05 -2.31 0.02 

Male : Julian Date -0.08 0.05 -1.42 0.16 
Residual standard error:  7.982 on 792 degrees of freedom 
Multiple R-squared:    0.341 
Adjusted R-squared:    0.336 
F-statistic:    68.29 on 6 and 792 DF 
p-value:    < 2.2e-16 

Wing Chord 

(Intercept) Adult Female 203.38 2.23 91.04 <0.0001 
Year 0.09 0.05 1.70 0.09 

Juvenile Female -1.16 0.69 -1.68 0.09 
Male -8.47 0.70 -12.14 <0.0001 

Julian Date -0.04 0.01 -4.50 <0.0001 
Residual standard error:  5.482 on 794 degrees of freedom 
Multiple R-squared:    0.3545 
Adjusted R-squared:    0.3512 
F-statistic:      109 on 4 and 794 DF 
p-value:    < 2.2e-16 

 

!
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CHAPTER 2: Geographic Variation in Morphology of the American Kestrel 

(Falco sparverius) Across North America.  

 

ABSTRACT 

We assessed geographical variation in American kestrel mass, wing chord, sexual 

size dimorphism, and wing loading index across seven fall migration sites. Although 

previous research suggested that eastern kestrels are larger than western kestrels, our 

results suggest a more complex pattern of variation. To address the potential for limited 

east-west gene flow to influence patterns of variation, we tested whether the magnitude of 

longitudinal distance between sites was related to the magnitude of differences in kestrel 

morphology between sites. Wing chord differed between sites to a greater extent when 

sites were farther apart, but there was no effect of longitudinal distance between sites on 

differences in body mass. This differential pattern suggests that wing chord and body 

mass vary across North America in response to different processes, even though wing 

chord and body mass are generally correlated with each other. Selective forces may drive 

variation in body size, and thus sexual size dimorphism and wing loading, across sites, 

while variation in wing chord may also be linked to genetic drift. 

 

INTRODUCTION  

Geographic variation in body size and morphology could reflect variation in the 

ecological and evolutionary processes that determine these traits (Mitchell-Olds et al. 

2007). For example, species from more distant or isolated geographic regions may exhibit 

greater longitudinal divergence in body size resulting from reduced gene flow between 
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populations (Chakraborty & Nei 1982; Storz 2002; González et al. 2011). Alternatively, 

regional variation in selective pressures may drive variation in morphology between 

regions (Johansson et al. 1998; Edelaar et al. 2008). Given the importance of body size in 

determining ecological and evolutionary processes (Calder 1984; Peters 1986), 

understanding geographic variation in size and morphology can inform our understanding 

of variation in ecological processes in different regions. Variation in body size and 

morphology is expected to periodically undergo selection and is generally assumed to 

represent adaptation to local environments, but the degree to which this variation occurs 

is still poorly understood (Wigginton & Dobson 1999; Stillwell & Fox 2009). 

Evolutionary pressures influencing body size are now changing as the climate 

responds to greenhouse gas inputs (IPCC 2001). Although some species are able to cope 

with changing environments by moving to new locations (Parmesan et al.1999), others 

may display flexibility in traits that enable them to maintain fitness in the face of change 

(Bell & Gonzalez 2009). In particular, changes in body size and morphology are 

becoming a common response to climate change, specifically warming temperatures 

(Ozgul et al. 2010; Goodman et al. 2011; Sheridan & Bickford 2011; DeLong 2012). 

Developing a clear baseline about current geographic variation in size could facilitate 

understanding future changes in body size of widespread species. 

Many avian species with widespread geographic distributions show 

morphological variation, including raptors such as sharp-shinned hawks (Accipiter 

striatus), cooper’s hawks (Accipiter cooperii), northern goshawks (Accipiter gentilis), 

red-tailed hawks (Buteo jamaicensis) (Johansson 1998 ; Hull et al. 2008; Smith et al. 

2013), great horned owls (Bubo virginianus), flammulated owls (Otus flammeolus) 
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(McGillivray 1989; Smith et al. 2011), passeriformes (Gardner et al. 2014), and 

Anseriformes (Larsson & Forslund 1991). There are some general patterns in this 

geographic variation. For example, raptors in the western parts of North America often 

show significantly longer wings and tails than conspecifics from eastern flyways 

(Pearlstine & Thompson 2004), and inland migrants tend to have lower flight-surface 

loading compared to coastal conspecifics (Smith et al. 1990). 

American kestrels (Falco sparverius) are the smallest North American falcon and 

can be found in many habitats throughout North America south of the arctic tree line 

(Clark & Wheeler 2001). Kestrels show geographic variation in morphology, including 

body mass (Pearlstine & Thompson 2004). Previous studies have focused on data 

collected at only a few migration flyways such as Cape May Point, Goshute Mountains, 

Manzano Mountains, and have not included kestrel populations from the west coast or 

mid-west in their analysis. Furthermore, kestrel populations have been declining since the 

mid-1990s, and kestrels have shown concomitant changes in body mass and wing chord 

in most locations across North America (Ely et al. (in prep.), Chapter 1). 

Here we use a continental-scale, multi-decadal database on kestrels captured 

during fall migration to evaluate regional patterns of body size, wing chord, sexual size 

dimorphism, and wing loading in kestrels. We also test the hypothesis that differences in 

size across the continent might have arisen through random divergence, which would be 

supported by a negative correlation between distance in space and difference in size. 
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MATERIALS AND METHODS 

Study Sites 

Kestrel banding data came from the study sites described in Chapter l (Figure 2; 

Ely et al. 2016) and include Golden Gate Raptor Observatory, Intermountain Bird 

Observatory, HawkWatch International, Hawk Ridge Bird Observatory, Hawk Mountain 

Sanctuary, and Cape May Raptor Banding Project ( Viverette et al. 1996; Farmer & 

Smith 2009; Hull et al. 2010; Evans et al. 2012). Kestrels pass through these sites during 

fall migration from northern breeding areas to southern wintering grounds. Thus, birds 

from the different sampling sites vary in their longitudinal origin, though the latitudinal 

origin of the birds is unknown. We analyzed all data available over the entire period. 

Data collection 

Kestrels were trapped, banded, and measured using the methods described in Ely 

Chapter 1. The data were cleaned by removing birds with a crop score above ½ and birds 

where wing chord and body mass measurements were greater than 3 SD of the mean 

mass and wing chord measurements for each sex (Table 2). Only the first encounter 

measurements of an individual during a season were used in analysis. We report the mean 

mass and wing chord differences between males and females at each site (Table 2). 

Although adult kestrels tend to be heavier than juveniles, HY (Hatch year), AHY (After 

hatch year), SY (Second year), and ASY (After second year) were grouped together for 

this study because we were interested in the regional patterns rather than how they differ 

between ages. Male and female kestrels were sexed by wing and tail color (Clark & 

Wheeler 2001). 
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Data analysis 

We used two-way analysis of variance (ANOVA) to test for differences in the 

mass and wing chord of kestrels among sites and sex (Table 1). We then used a post-hoc 

Tukey HSD (honest significant difference) test to determine significant differences 

between all pair-wise site and sex combinations (Table 3 and 4). The differences in 

longitude between each site were calculated by subtracting the longitudinal minutes, with 

the more western site subtracted from the eastern site so that the difference was negative 

(Table 3). 

We then used linear regression to assess whether wing chord and mass differed to 

a greater extent when longitudinal differences were greater, suggesting random 

divergence in size across kestrel populations. The response variable was mass or wing 

chord and the predictor variable was longitudinal difference (Table 5). 

The degree of sexual size dimorphism (SSD) for each site was calculated as the 

within-site ratio of the average male and female mass and wing chord. Standard errors 

were computed with the pooled standard error for males and females as follows (Figure 

1; Ku 1966): (!"!! )! + (
!"!
! )!. 

Wing loading is the ratio of total wing and tail area to body mass. In the absence 

of measurements of total wing area and tail, we used the wing loading index of Temple 

(1972), which is strongly correlated with wing loading. We calculated the wing loading 

index by dividing the cube root of body mass by wing chord. We used ANOVA (Table 1) 

to test for differences between sites and used a post-hoc Tukey HSD test to identify 

significant differences between all pair-wise site and sex combinations. 
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RESULTS 

Kestrel mass differed significantly among sites, sexes, and the interaction between 

site and sex, as seen in Table 1. The female kestrels at Lucky Peak were 8% to 9% larger, 

and males were 6% larger than those of the same sex at Hawk Ridge, Manzano 

Mountain, and the Goshute Mountain sites. Female birds from Lucky Peak and Cape 

May Point were 5% and 3% larger, and, males were 3% larger than the birds found at 

Hawk Mountain and Golden Gate Raptor Observatory (Figure 1). 

Wing chord also differed between sites and sexes (Table 1, Figure 1), but the 

interaction of site and sex was not significant. Female and male wing chords at the 

Manzano Mountains were approximately 1% longer than those at Lucky Peak and the 

Goshute Mountains. Wing chords in the Manzano Mountain were approximately 2% 

longer than those at Golden Gate, and approximately 3% longer than for birds at Hawk 

Ridge, Hawk Mountain, and Cape May. 

Wing loading index differed between sites and sexes (Table 1; Figure 4). Wing 

loading index was higher in females than males across sites (p <0.0001). Overall, kestrels 

at Cape May Point and Lucky Peak had the highest wing loading index (p <0.0001), 

while kestrels in the Manzano and Goshute Mountains had the lowest wing loading index 

(p < 0.0001) (Table 6). 

As a result of variation in male and female wing chord and body size across sites, 

sexual size dimorphism (SSD) also varied across sites (Figure 1), but the pattern of 

spatial variation in SSD was not the same for wing chord and body mass. SSD for mass 

was greatest in the two western most sites, Golden Gate Raptor Observatory and Luck 

Peak. The other five states had lower but similar SSD for mass. Wing chord SSD was 
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similar for all seven sites (Figure 1). Variation in body mass was not associated with how 

far apart sampling locations were from each other (Table 5; Figure 2). In contrast, 

differences in wing chord across sites were larger the farther the sites were from each 

other (Table 5; Figure 2).  

 

DISCUSSION 

American kestrels showed variation in mass, wing chord, sexual size dimorphism, 

and wing loading index across flyways in North America. Patterns of variation across 

sites, however, were different for mass and wing chord. This variation in morphological 

traits could be linked to different climates, food resources, or migration strategies used 

across North America (Kerlinger 1989; Smith et al. 1990; DeLong et al. 2005; Hull et al. 

2008). Alternatively, phenotypic variation across large spatial scales could arise through 

random divergence, where the farther apart populations are, the less chance there is for 

gene flow and the greater the resulting differences (Mitchell-Olds et al. 2007). We tested 

for such a relationship between longitudinal distance and the difference in mass or wing 

chords between sites and found that more spatially separated populations of kestrels 

showed greater divergence in wing chord but not body mass. As both wing chord and 

body mass are highly heritable (Brown & Brown 2013), this result suggests that wing 

chord variation arises in part due to genetic drift, while body size may be under more 

regional selection. However, because both wing chord and body size respond to variation 

in energetic conditions during growth, the differences might also reflect phenotypically 

plastic responses to conditions across longitude. 
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Body size may evolve in response to temperature, resource availability, and 

predation risk (Goodman et al. 2011; Lima 1986; Yom-Tov & Yom-Tov 2006). 

Unfortunately, migration sites sample migrating birds originating to the north of the sites, 

so the latitudinal origin of these kestrels is unknown. As such, breeding areas of the 

kestrels used in our study are unknown, and it is difficult to assess how any of these 

factors actually affect body mass variation across sites. However, it is possible to use 

differential wing loading, which is correlated with body mass, to infer something about 

different kestrel populations. 

Wing loading is especially important for raptors that spend substantial time in the 

air and capture prey in flight (Mueller et al. 2002), and travel long migratory distances. 

Birds that use coastal flyways have different flight strategies than birds that use flyways 

through inland regions (Mueller et al. 1981; Smith et al. 1990; Mueller et al. 2002). The 

kestrels found moving along coastal migration sites, Cape May, N.J., and Golden Gate 

Raptor Observatory, CA, are generally heavier and shorter winged, and have heavier 

wing loading. Birds with heavier wing loading have increased maneuverability (Mueller 

et al. 1981), which aids in flying through forested areas typical of these regions. Kestrels 

that migrate through the central North America or Great Basin region, such as the 

Goshute Mountains and Manzano Mountains, are typically longer winged, weigh less, 

and have lighter wing loading. Birds with light wing loading can glide more slowly and 

rise more rapidly with updrafts, which are common in the open, warm, and dry 

Intermountain West. We expect to see birds in the Intermountain and Southern Rockies 

flyways with light wing loading because regions with vast deserts lined by mountains 
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should have increased updrafts and thermal patterns (Smith et al. 1990; Hoffman & 

Smith 2003).  

Raptors generally show reversed sexual size dimorphism where the male is 

smaller than the female (Reynolds 1972). Our results show that kestrel variation in sexual 

size dimorphism across regions takes on different patterns for mass and wing chord. 

Kestrels at the two most western sites show greater dimorphism in mass than birds east of 

the Rocky Mountains, but the sexual size dimorphism in wing chord is similar across the 

sites, which may be consistent with the idea of random divergence in wing chord but 

selective forces operating on body mass. There are many hypotheses about the origin of 

reversed sexual size dimorphism (Reynolds 1972). For example, females may be under 

selection to be larger to prevent the occurrence of filicidal behavior by the male (Brown 

& Amadon 1968). Alternatively, sexual size dimorphism might have arisen as an 

adaptation that reduces intraspecific competition (Reynolds 1972). Although it is still not 

understood what drives SSD in general, our results indicate that the mechanisms may 

vary in magnitude regionally. 

Our research provides a new perspective on the geographical variation of 

American kestrel mass and wing chord. Previous studies suggest that raptors found in 

eastern North America are generally larger than western birds, but we show some regions 

in the west have larger birds and birds with longer wing chord. Most importantly, the 

interacting forces acting on body mass and wing chord across the continent have 

generated a complex pattern of variation in sexual size dimorphism and wing loading that 

remains poorly understood. 
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Table 1. Output of ANOVA of kestrel mass, wing chord and wing loading index. Degrees 

of freedom (df), sum of squares (sum of sq), and mean square (mean sq). Significant p-

values (<0.05) are in bold. 

 

Term df sum of sq mean sq p-value 
Mass 

Site 6 236768 39461 <0.0001 
Sex 1 445557 445557 <0.0001 

Site:Sex 6 5025 838 <0.0001 
Residuals 16207 1292569 80 NA 

Wing chord 
Site 6 104073 17346 <0.0001 
Sex 1 246552 246552 <0.0001 

Site:Sex 1 193 32 0.24 
Residuals 16207 437912 27 NA 

Wing Loading Index 
Site 6 1.037 0.1728 <0.0001 
Sex 1 0.437 0.4369 <0.0001 

Site:Sex 6 0.014 0.0023 <0.0001 
Residuals 16207 3.842 0.0002 NA 
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Table 2. Sample size (n), mean mass (g), and mean wing chord (mm) and standard error 

for female and male kestrels at seven migration sites. 

Location Sex n Mass Wing Chord 
GGRO, CA (GG) M 623 103.3 ± 0.31 185.5 ± 0.23 

 F 682 115.1 ± 0.34 193.5 ± 0.21 
Lucky Peak, ID (LP) M 1865 109.8 ± 0.2 189.2 ± 0.11 

 F 1322 122.1 ± 0.28 196.7 ± 0.14 
Goshute Mountains, NV (GO) M 1844 102.1 ± 0.2 188.9 ± 0.12 

 F 1692 111.3 ± 0.23 196.8 ± 0.13 
Manzano Mountains, NM (MA) M 415 102.1 ± 0.34 189.5 ± 0.24 

 F 230 112.1 ± 0.53 197.1. ± 0.34 
Hawk Ridge, MN (HR) M 920 102.4 ± 0.23 183.6 ± 0.15 

 F 844 112.1 ± 0.29 191.8 ± 0.17 
Hawk Mountain, PA (HM) M 62 106.6 ± 1.2 184.6 ± 0.7 

 F 40 115.9 ± 1.5 190.8 ± 0.92 
Cape May, NJ (CM) M 2571 108.8 ± 0.17 182.9 ± 0.1 

 F 2980 119.2 ± 0.18 190.8 ± 0.1 
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Table 3. Differences in mean mass (g) within sexes across different sites from the Tukey 

HSD test. L. Diff is the longitudinal difference between sites in minutes. Difference is the 

difference in observed means, Lwr is the lower end point of the interval, Upr is the upper 

end point of the interval and p –value is the value after adjustment for the multiple 

comparisons. Significant p-values (<0.05) are in bold. See Table 2 for site acronyms.  

  Female Male 
Site L. Diff Diff Lwr Upr p-val Diff Lwr Upr p-val 

LP-GG -6 6.95 5.55 8.34 <0.0001 6.55 5.17 7.93 <0.0001 
GO-LP -2 -10.84 -11.92 -9.75 <0.0001 -7.76 -8.74 -6.78 <0.0001 
GO-GG -8 -3.89 -5.24 -2.54 <0.0001 -1.21 -2.59 0.18 0.17 
MA-LP -10 -10.01 -12.12 -7.89 <0.0001 -7.72 -9.31 -6.13 <0.0001 
MA-GG -16 -3.06 -5.32 -0.80 0.0005 -1.16 -3.03 0.71 0.71 
MA-GO -8 0.83 -1.26 2.91 0.99 0.04 -1.55 1.64 1.00 
HR-LP -24 -10.03 -11.34 -8.72 <0.0001 -7.40 -8.60 -6.19 <0.0001 
HR-GG -30 -3.08 -4.62 -1.55 <0.0001 -0.84 -2.39 0.71 0.87 
HR-GO -22 0.81 -0.46 2.07 0.67 0.37 -0.84 1.57 1.00 
HR-MA -14 -0.02 -2.23 2.19 1.00 0.32 -1.42 2.06 1.00 
HM-LP -41 -6.25 -11.05 -1.44 0.001 -3.25 -7.11 0.62 0.22 
HM-GG -47 0.70 -4.17 5.57 1.00 3.31 -0.68 7.29 0.23 
HM-GO -39 4.59 -0.20 9.38 0.08 4.51 0.65 8.38 0.007 
HM-HR -17 3.78 -1.06 8.63 0.33 4.15 0.22 8.08 0.027 
HM-MA -31 3.76 -1.36 8.88 0.44 4.47 0.40 8.54 0.016 
CM-LP -42 -2.90 -3.88 -1.93 <0.0001 -1.09 -2.00 -0.18 0.0044 
CM-GG -48 4.04 2.77 5.31 <0.0001 5.46 4.13 6.80 <0.0001 
CM-GO -40 7.93 7.02 8.84 <0.0001 6.67 5.76 7.59 <0.0001 
CM-HM -1 3.34 -1.43 8.11 0.52 2.16 -1.69 6.01 0.84 
CM-HR -18 7.13 5.96 8.29 <0.0001 6.31 5.16 7.45 <0.0001 
CM-MA -32 7.10 5.07 9.13 <0.0001 6.63 5.08 8.18 <0.0001 
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Table 4. Differences in mean wing chord (mm) within sexes across different sites from 

the Tukey HSD test. L. Diff is the longitudinal difference between sties in minutes. Diff 

is the difference in observed means between sites, Lwr is the lower end point of the 

interval, Upr is the upper end point of the interval and p –value is the value after 

adjustment for the multiple comparisons. Significant p-values (<0.05) are in bold. See 

Table 2 for site acronyms. 

  Female Male 
Site L. Diff Diff Lwr Upr P-val Diff Lwr Upr p-val 

LP-GG -6 3.22 2.40 4.04 <0.0001 3.64 2.83 4.45 <0.0001 
GO-LP -2 0.05 -0.58 0.69 1.00 -0.29 -0.86 0.28 0.92 
GO-GG -8 3.27 2.48 4.07 <0.0001 3.35 2.54 4.16 <0.0001 
MA-LP -10 0.40 -0.83 1.64 1.00 0.36 -0.57 1.30 0.99 
MA-GG -16 3.62 2.30 4.95 <0.0001 4.00 2.91 5.10 <0.0001 
MA-GO -8 0.35 -0.87 1.57 1.00 0.65 -0.28 1.59 0.52 
HR-LP -24 -4.94 -5.70 -4.17 <0.0001 -5.52 -6.23 -4.82 <0.0001 
HR-GG -30 -1.72 -2.62 -0.82 <0.0001 -1.89 -2.79 -0.98 <0.0001 
HR-GO -22 -4.99 -5.73 -4.25 <0.0001 -5.24 -5.94 -4.53 <0.0001 
HR-MA -14 -5.34 -6.63 -4.05 <0.0001 -5.89 -6.91 -4.87 <0.0001 
HM-LP -41 -5.93 -8.74 -3.12 <0.0001 -4.54 -6.80 -2.27 <0.0001 
HM-GG -47 -2.71 -5.56 0.13 0.08 -0.90 -3.23 1.44 0.99 
HM-GO -39 -5.99 -8.79 -3.19 <0.0001 -4.25 -6.51 -1.98 <0.0001 
HM-HR -17 -1.00 -3.83 1.84 1.00 0.99 -1.31 3.29 0.98 
HM-MA -31 -6.34 -9.33 -3.34 <0.0001 -4.90 -7.28 -2.52 <0.0001 
CM-LP -42 -5.99 -6.56 -5.42 <0.0001 -6.32 -6.85 -5.79 <0.0001 
CM-GG -48 -2.77 -3.51 -2.03 <0.0001 -2.68 -3.46 -1.90 <0.0001 
CM-GO -40 -6.05 -6.58 -5.51 <0.0001 -6.03 -6.56 -5.49 <0.0001 
CM-HM -1 -0.06 -2.85 2.73 1.00 -1.78 -4.03 0.47 0.31 
CM-HR -18 -1.06 -1.74 -0.37 <0.0001 -0.79 -1.46 -0.12 0.006 
CM-MA -32 -6.39 -7.58 -5.21 <0.0001 -6.68 -7.59 -5.77 <0.0001 
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Table 5. Summary of wing chord (WC) and mass change with longitudinal differences 

(Long). Est is the estimate, SE is standard error, t-val is the t-value and p-val is p-value. 

Significant p-values (<0.05) are in bold. 

Term Male Female 

 Est SE t-val p-val Est SE t-val p-val 

Intercept (Mass) -1.37 1.88 -0.73 0.47 -1.97 2.41 -0.82 0.43 

Long -0.1 0.067 -1.48 -1.48 -0.08 0.086 -0.96 0.34 

Intercept (WC) 0.95 1.19 0.8 0.44 1.28 1.05 1.22 0.24 

Long 0.13 0.042 3.06 0.007 0.16 0.03 4.16 0.0005 
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Table 6. Significant differences in wing loading index within sexes across different sites 

from the Tukey HSD test. Diff is the difference in observed means between sites, Lwr is 

the lower end point of the interval, Upr is the upper end point of the interval and p –value 

is the value after adjustment for the multiple comparisons Significant p-values (<0.05) 

are in bold. See Table 2 for site acronyms. 

 Female Male 
Site Diff Lwr Upr p-val Diff Lwr Upr p-val 

LP-GG 0.01 0.01 0.01 <0.0001 0.008 0.006 0.010 <0.0001 
GO-LP -0.02 -0.02 -0.02 <0.0001 -0.01341 -0.02 -0.012 <0.0001 
GO-GG -0.01 -0.01 -0.01 <0.0001 -0.00550 -0.01 -0.003 <0.0001 
MA-LP -0.02 -0.02 -0.01 <0.0001 -0.01394 -0.02 -0.011 <0.0001 
MA-GG -0.01 -0.01 0.00 <0.0001 -0.00603 -0.01 -0.003 <0.0001 
MA-GO 0.00 0.00 0.00 1.00 -0.00053 -0.003 0.002 1.00 
HR-LP -0.01 -0.01 -0.01 <0.0001 -0.00760 -0.01 -0.006 <0.0001 
HR-GG 0.00 -0.01 0.00 0.0003 0.00031 -0.002 0.003 1.00 
HR-GO 0.01 0.00 0.01 <0.0001 0.00581 0.004 0.008 <0.0001 
HR-MA 0.01 0.00 0.01 0.0004 0.00634 0.003 0.009 <0.0001 
HM-LP 0.00 -0.01 0.00 0.91 -0.00107 -0.008 0.006 1.00 
HM-GG 0.00 0.00 0.01 0.92 0.00684 <0.001 0.014 0.05 
HM-GO 0.01 0.01 0.02 <0.0001 0.01233 0.006 0.019 <0.0001 
HM-HR 0.01 0.00 0.02 0.086 0.00652 <0.001 0.013 0.07 
HM-MA 0.01 0.00 0.02 0.0001 0.01287 0.006 0.020 <0.0001 
CM-LP 0.00 0.00 0.00 0.20 0.00469 0.003 0.006 <0.0001 
CM-GG 0.01 0.01 0.01 <0.0001 0.01260 0.01 0.015 <0.0001 
CM-GO 0.02 0.02 0.02 <0.0001 0.01810 0.02 0.020 <0.0001 
CM-HM 0.01 0.00 0.01 0.55 0.00577 -0.001 0.012 0.17 
CM-HR 0.01 0.01 0.02 <0.0001 0.01229 0.01 0.014 <0.0001 
CM-MA 0.02 0.02 0.02 <0.0001 0.01863 0.02 0.021 <0.0001 
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Figure 1. Average mass and wing chord for males and females with standard error bars, 

sexual size dimorphism for mass and wing chord with standard error bars for each site. 

Column and rows are as follows: Sites are as follows: GG: Golden Gate Raptor 

Observatory; LP: Lucky Peak; GO: Goshute Mountains; MA: Manzano Mountains; HR: 

Hawk Ridge; HM: Hawk Mountain; CM: Cape May.  
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Figure 2. Difference in average wing chord (mm) by difference in longitudinal minutes 

with best-fit line. The dots represent the male and female pair-wise comparisons from 

Tukey HSD, see Table 4. 
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Figure 3. Wing loading index for female and male kestrel for each site with upper and 

lower hinges (similar to first and third quartile), whiskers extend +/-1.58 IQR (inter-

quartile range) of the hinge. Data beyond the end of the whiskers are outliers. 
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