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Chairperson:  Dr. Diana Lurie  
 
  Low-level lead (Pb) exposure is associated with behavioral and cognitive dysfunction. It 
is not clear how Pb produces these behavioral changes but low-level Pb exposure and 
learning disabilities have been associated with altered auditory temporal processing in 
both humans and animals. Temporal processing is used to decode complex sounds and to 
detect a signal within a noise background, and it is thought that neurons of the superior 
olivary complex (SOC) in the brainstem play a role in sound detection in noisy 
environments and in selective auditory attention.  The SOC receives a catecholaminergic 
and a serotonergic innervation from the locus coeruleus and the dorsal raphe respectively. 
While the physiological role of the noradrenergic input has yet to be defined, serotonin is 
involved in auditory temporal processing.  Because Pb exposure modulates auditory 
temporal processing, the serotonergic system is a potential target for Pb. The current 
study was undertaken to determine whether developmental Pb exposure preferentially 
changes the expression of serotonin within the SOC.  Pb-treated mice were exposed to no 
Pb, 0.01 mM (very low) or 0.1 mM (Low) Pb acetate throughout gestation and through 
21 days postnatally.  Brainstem sections from control and Pb-exposed mice were 
immunostained for the vesicular monoamine transporter 2 (VMAT2), serotonin, and 
dopamine beta hydroxylase (DβH, a marker for norepinephrine) in order to elucidate the 
effect of Pb on monoaminergic input into the SOC.  In addition, sections were 
immunolabeled with antibodies to VGLUT1, VGAT and VAChT in order to determine 
whether Pb exposure alters the glutaminergic, gaba-ergic, or cholinergic systems.  Pb 
exposure caused a significant decrease in VMAT2, 5HT, and DβH expression while 
VGLUT1, VGAT and VAChT showed no change.  These results provide evidence that 
Pb exposure during development alters normal monoaminergic expression in the auditory 
brainstem.  
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General Introduction 

Lead in the environment 

Pb is a naturally occurring metal that is most often found in the +2 oxidation state.  

It is found in the earth’s crust at about 15-20 mg/kg and over one third of the world’s 

stores are in North America (ATSDR 2007). The amount of Pb in the atmosphere has 

increased dramatically over the past hundred years due to human use.  In unpopulated 

areas like Antarctica, the amount of Pb in the air is about 7.6x10-5 µg/m3, but around 

sources such as smelting factories it can reach >10 µg/m3.  It is commonly used in 

industry today for leaded batteries, leaded alloys, and corrosion/acid resistant materials 

used in the building industry (ATSDR 2007).  Common exposure routes occur through 

occupation and Pb paint that is still present in houses.  For occupational exposures, Pb 

smelting and refining can lead to close proximity Pb air concentrations of 4,470 µg/m3, 

and structural steel welders Pb air concentrations average 1,200 µg/m3 in their breathing 

zone (ATSDR 2007).   These levels are extremely high, and as a reference, the national 

ambient air quality standard for Pb is 1.5 µg/m3 (ATSDR 2007).  However, all of the 

current uses of Pb in industry do not compare to the damage done by leaded gasoline.  

Tetraethyl lead was an additive to gas for almost three quarters of a century until it’s 

phase out ended in 1995.  At it’s peak in 1979, automobile emissions released 208 

million pounds of Pb into U.S. air (ATSDR 2007).  With the timed phase out of Pb in 

gasoline the US environmental protection agency found that from 1982 to 2002, 

atmospheric emissions of Pb decreased by 93%.   This is a great success but the fact 

remains that Pb is still a readily available toxin. 
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In spite of these gains Pb remains a large problem in many areas of the U.S.  The 

center for disease control and prevention set the Pb action level for children less than 7 

years of age at 10 µg/dl.  Between 1999 and 2002 the CDC found that approximately 

310,000 children (1.6%) age 1 to 5 still had blood Pb levels above 10 µg/dl (CDC 2005).  

Further, the distribution of these numbers was uneven, showing children in a lower 

socioeconomic class to be more likely to have elevated blood Pb levels (CDC 2005).  

Even today Pb is still a problem in products assumed to be safe.  In September of 2007 

Mattel, a major children’s toy manufacturer, recalled 1.5 million toys in the U.S. due to 

Pb concentrations reaching 200 times the legal limit (Byron 2007).  Clearly, Pb remains 

an accessible environmental toxin. 

 

Behavioral and cognitive impairments of Pb 

 Pb is not just a readily available substance but is also a toxin with far reaching 

effects.  Numerous studies have shown a correlation between low-level Pb exposure and 

cognitive function.  Lanphear et al. 2000 found that for every 1 µg/dL increase in blood 

Pb concentration, there was a 0.7-point decrease in mean arithmetic scores, a 1-point 

decrease in mean reading scores, a 0.1-point decrease on mean nonverbal reasoning 

scores, and a 0.5-point decrease in mean short-term memory scores in children exposed 

to low levels of Pb.  In 2003, Canfield et al. showed that blood Pb concentration was 

inversely associated with IQ and that as lifetime average blood Pb concentrations 

increased from 1µg/dL to 10 µg/dL, average IQ declined by 7.4 points (Canfield, Kreher 

et al. 2003).  The agency for toxic substances and disease registry has demonstrated that 

the current value of economic losses in the Unites States attributable to Pb exposure 
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amounts to $43.4 billion per year in each annual birth cohort when taking into 

consideration the loss of earning potential due to lowered IQ (ATSDR 2007). 

 It is evident that low levels of Pb cause behavioral deficits in children but a 

“behavioral signature” has yet to be identified.  One particular area of interest in 

behavioral studies has been attention.  Bellinger et al. found significant correlations for 

low level Pb exposure, focus, and executive function (Bellinger and Dietrich 1994).  

Mendelsohn et al. showed Pb exposed children were more hyperactive, impulsive, and 

easily frustrated (Mendelsohn, Dreyer et al. 1998).  Another study showed deficits in 

attention areas such as executive function, off-task behaviors, and withdrawn behaviors 

with Pb exposures <10 µg/dl  (Chiodo, Jacobson et al. 2004).  However, the effects of 

environmental Pb exposure does not rely just on ambiguous observances, but also can be 

clinically classified as disorders.  Braun et al. found environmental exposure to Pb 

increased the incidence of ADHD and that Pb exposure accounts for 290,000 cases of 

ADHD in U.S. children (Braun, Kahn et al. 2006).  Further, Glotzer et al. has analyzed 

the relationship between reading disabilities and the costs associated with reading 

disabilities in Pb exposed children (Glotzer, Freedberg et al. 1995).  Even though a 

significant link between Pb exposure and behavioral deficits has been found, the 

underlying cause for attention deficits remains unknown.   

 One potential underlying cause for the behavioral deficits is change in auditory 

processing.  Finkelstein et al. reviewed the link between Pb exposure in children and 

auditory deficits. The review included altered auditory processing, and decreased 

performance in tests requiring appropriately timed reactions (Finkelstein, Markowitz et 

al. 1998).  In addition,  Holdstein et al. found Pb exposed children showed increased 
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latencies in brainstem auditory evoked potentials, in peak V and interpeak I-V (Holdstein, 

Pratt et al. 1986).  These auditory deficiencies are mirrored in several animal studies.  A 

study conducted by Gray et al. showed that chicks exposed to low levels of Pb are 

deficient in a test of central auditory temporal processing called backward masking.  

Further, our lab demonstrated that Pb exposed CBA mice displayed increased latencies in 

the interpeak interval between peaks I and V with presentation of acoustic stimuli (Jones, 

Prins et al. 2007).  Taken as a whole, this body of literature indicates that there are 

deficits in auditory temporal processing following Pb exposure.   

 

Auditory temporal processing and the SOC 

 Temporal processing is used to decode complex sounds and to detect a signal 

within a noise background.  There are several regions of the brain that are involved in 

auditory temporal processing but the superior olivary complex (SOC) is of primary 

interest in the current study.  The SOC is the first site of binaural auditory processing in 

the brainstem and is thought to be important in using temporal aspects of sound to 

determine stimuli location (Squire 2003).   

Further, neurons of the SOC are thought to play a role in sound detection in noisy 

environments and in selective auditory attention (Mulders and Robertson 2005).  

Previous studies have shown that removal of the olivocochlear bundle alters the ability to 

discriminate vowels in noise.  In addition, recordings of primary auditory afferents in the 

area have demonstrated enhancement of responses to transient signals in the presence of 

noise background (Giraud, Garnier et al. 1997).   The SOC has the ability to modify 
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sound but how the structure and the function of the SOC is altered with Pb exposure has 

not been studied. 

 

Serotonin is linked to auditory temporal processing, attention, and arousal 

 The connection between auditory temporal processing and Pb exposure could in 

part be explained by alterations in the serotonergic system.  Serotonin plays an important 

role in attention and cognitive function (Schmitt, Wingen et al. 2006).  Further, studies 

have shown it has the ability to direct and focus cognitive activity or alertness for specific 

stimuli over a prolonged period of time (Schmitt, Wingen et al. 2006).  Interestingly, 

serotonergic neurons in the dorsal raphe nuclei, have their highest activity levels in awake 

and alert animals further linking the dorsal raphe nuclei to attention (Hurley and Pollak 

2005).  Alterations in the serotonergic system are related to ADHD and other learning 

disabilities (Hawi, Dring et al. 2002; Oades 2007).  The functions of the serotonergic 

system show a link with the deficits seen in auditory processing by Pb.   

 The link between serotonin and auditory temporal processing is enhanced by the 

fact that the system innervates most nuclei in the ascending auditory system including the 

superior olivary complex (SOC) (Woods and Azeredo 1999; Thompson and Schofield 

2000; Behrens, Schofield et al. 2002; Schofield 2002; Horvath, Ribari et al. 2003; 

Thompson and Hurley 2004; Hurley and Pollak 2005; Hall and Hurley 2007; Hurley 

2007).   The superior olivary complex consists of the lateral superior olive, medial 

superior olive, and medial nucleus of the trapezoid body.  A large number of neurons 

from the LSO ascend and synapse in the inferior colliculus, but some neurons project 

efferently to inner hair cells providing a pathway of descending input. The functional role 
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of this efferent system remains unknown but it has been hypothesized to modify or 

control binaural interactions, reduce the masking effects of background noise, protect the 

cochlea from noise-induced trauma, and alter the response of the cochlea to sound with 

changes in attention (Woods and Azeredo 1999; Darrow, Maison et al. 2007). 

 Serotonin is thought to alter auditory responses to acoustic stimuli.  A study done 

by Cransac et al. found that if experimentally controlled white noise increased, 5-HT 

content in the dorsal cochlear nucleus and posteroventral cochlear nucleus also increased.  

They also found that application of 5-HT to cochlear neurons inhibited acoustically 

evoked neuronal firing, indicating that  5-HT could be used to eliminate background 

noise(Cransac, Cottet-Emard et al. 1998).  Hurley et al. found that serotonin altered tone-

evoked responses in 66% of inferior colliculus neurons sampled and that it had the ability 

to depress or facilitate neuronal response depending on the nature of the acoustic stimulus 

(Hurley and Pollak 1999).   Hurley et al. further showed that serotonin significantly 

altered first-spike latencies in response to tones in IC neurons and that the size of the 

serotonin-evoked latency shifts were dependent on the intensity and frequency of the 

stimulus.   They concluded that serotonin could alter spike count, first spike latency, 

variation of first-spike latency and the interspike interval of responses (Hurley and Pollak 

2005).  These alterations are significant because they represent features of sensory stimuli 

and alterations in serotonin has the potential to effectively change features of sound.  A 

study in Mexican free-tailed bats showed that serotonin application altered the neuronal 

population response to species-specific vocalizations.  Serotonin created a unique spatio-

temporal pattern of activity among neurons in the inferior colliculus in response to 

specific vocalizations (Hurley and Pollak 2005).  These studies show that serotonin could 
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cause both alterations of focused attention to auditory stimuli and changes in the ability to 

decipher an auditory signal in a background of ambient noise.  

 In order to determine whether the serotonergic system is preferentially altered by 

developmental Pb exposure, the expression of the vesicular transporters for glutamate, 

GABA, acetylcholine, and the monoamines were examined within the murine SOC by 

immunocytochemistry.  The goal was to identify those neurotransmitter systems that 

might be affected by Pb exposure.  The auditory system uses all of the neurotransmitters 

mentioned above, with glutamate being the primary neurotransmitter used by ascending 

auditory pathways. The CBA mouse was chosen because this strain does not exhibit 

degeneration of the auditory system at early ages.   In addition, our lab has previously 

shown that Pb affects the CBA mouse SOC at low levels of exposure (Prins et al, 

submitted).  The mouse model also allows us to explore a chronically-treated, 

developmental Pb exposure model in a moderately short time frame.  Further, the 

serotonergic system is well defined in the auditory brainstem of mice and has been shown 

to innervate our regions of interest.  We focused our attention on the LSO and MNTB 

because of their relevance to auditory temporal processing and because the LSO receives 

auditory input directly from the dorsal raphe nuclei.   The current study quantifies protein 

expression levels for VGLUT1, VACHT, VGAT and VMAT2 in the LSO and MNTB of 

mice chronically exposed to low levels of Pb.    
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Introduction 

Lead (Pb) has long been recognized as a toxic agent that has a significant impact 

on human health (Tong, von Schirnding et al. 2000; Sanborn, Abelsohn et al. 2002; 

Mannino, Albalak et al. 2003; Mannino, Homa et al. 2005; Toscano and Guilarte 2005). 

The neurotoxic effects of low doses of Pb have been shown to result in behavioral and 

cognitive deficits and in 1991, The Centers for Disease Control and Prevention set the 

acceptable blood Pb level at 10 µg/dL.  However, an increasing body of evidence has 

demonstrated that blood Pb levels below 10 µg/dL produce many behavioral deficits 

including lowered IQ, attention deficit hyperactivity disorder, and dyslexia (Glotzer, 

Freedberg et al. 1995; Lanphear, Dietrich et al. 2000; Canfield, Henderson et al. 2003; 

Canfield, Kreher et al. 2003; Kamel, Ramadan et al. 2003; Chiodo, Jacobson et al. 2004; 

Braun, Kahn et al. 2006; Gilbert and Weiss 2006; Chen, Cai et al. 2007).  

 It is not clear how Pb produces these behavioral changes but both low-level Pb 

exposure (Mulders and Robertson 2005) and learning disabilities have been associated 

with altered auditory temporal processing in both humans and animals (Finkelstein, 

Markowitz et al. 1998; Gray 1999; Lurie, Brooks et al. 2006).  Temporal processing is 

used to decode complex sounds and to detect a signal within a noise background, and it is 

thought that neurons of the superior olivary complex (SOC) in the brainstem play a role 

in sound detection in noisy environments and in selective auditory attention (Mulders and 

Robertson 2005).  The SOC receives a catecholaminergic and a serotonergic innervation 

from the locus coeruleus and the dorsal raphe respectively (Mulders and Robertson 

2005); (Thompson and Hurley 2004).   
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While the physiological role of the noradrenergic input to olivocochlear neurons 

has yet to be defined (Mulders and Robertson, 2005), serotonin has been shown to alter 

auditory temporal processing in the mammalian auditory brainstem (Hurley, Thompson 

et al. 2002; Hurley and Pollak 2005; Hall and Hurley 2007; Hurley 2007).  Olivocochlear 

neurons project to the inferior colliculus (IC), and serotonin alters both the magnitude and 

the latency of neuronal responses to auditory stimuli within the IC (Hurley 2007).   

Serotonin has been shown to modulate neuronal spike count, first-spike latency, temporal 

precision, and the interspike interval, all of which may alter temporal processing (Hurley 

and Pollak 2005).   Because Pb exposure modulates auditory temporal processing, the 

serotonergic system is a potential target for Pb within auditory brainstem nuclei. 

The current study was undertaken to determine whether developmental Pb 

exposure changes the expression of serotonin within the superior olivary complex (SOC).  

Brainstem sections from control and Pb-exposed mice were immunostained for the 

vesicular monoamine transporter 2 (VMAT2), serotonin, and dopamine beta hydroxylase 

(DβH, a marker for noradrenalin) in order to elucidate the effect of Pb on monoaminergic 

input into the SOC.   Control and Pb-exposed brainstem sections were also 

immunolabeled for the vesicular glutamate transporter 1 (VGLUT1) , the vesicular 

acetylcholine transporter (VAChT),  and the vesicular GABA transporter (VGAT) in 

order to determine the effect of Pb on glutaminergic, gaba-ergic, and cholinergic 

neurotransmitter systems.  Glutamate is considered to be the primary neurotransmitter for 

ascending auditory information (Thompson and Hurley 2004) but GABA,  acetycholine, 

and glycine are also important neurotransmitters within the auditory brainstem 
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(Thompson and Hurley 2004); (Thompson and Hurley 2004); (Maison, Adams et al. 

2003)).   

We found that developmental Pb exposure reduces immunoreactivity for VMAT, 

serotonin, and DβH within the Lateral Superior Olive (LSO) but has no effect on 

VGLUT 1 and 2, VAChT, or VGAT.  This affect appears to be specific to the LSO,  as 

western blot analysis did not reveal decreased monoamergic expression within the whole 

brainstem.  These findings demonstrate that developmental Pb exposure has a significant 

effect on the monoamergic innervation to the LSO. 

 

Materials and Methods 

 
Animals 

Breeding pairs of CBA mice were obtained from The Jackson Laboratory (Bar 

Harbor, Maine).  All mice used in these studies were maintained in micro isolator units in 

the University of Montana specific pathogen free animal facility. The animal care facility 

housed all mice on a 12 h light/dark cycle in a temperature-controlled environment.  

Cages, bedding, and food were sterilized by autoclaving and mice were handled with 

aseptic gloves.  Mice were allowed food and water ad libitum.  All animal use procedures 

were in accordance with NIH and the University of Montana IACUC guidelines using 

approved animal protocols.  

 

Lead Exposure 

Breeding pairs were randomly assigned to three groups and given unlimited 

access to water containing 0 mM (control) , (0.01 mM) (very low), or 0.1 mM (low) Pb  
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acetate. Breeding pairs were given Pb in their drinking water at the time of pairing and 

offspring were exposed to Pb throughout gestation and through the dam’s milk until 

postnatal day 21-24 (P21).  At this time mice were sacrificed as described below. 

 

Blood Lead Levels 

Blood was collected from anesthetized mice by retro-orbital puncture.  Blood Pb2+ 

levels were measured by the Montana Health Department in Helena, MT.  The means for 

the no Pb group included values of <1.0 which were included in the data set as equal to 

1.0. 

 

Western Blot Analysis 

Animals were sacrificed by cervical dislocation and the brainstem removed (n=16 

brains per treatment group).  The auditory region of the mouse brainstem was located by 

cutting a 2mm section out of a 1 mm mouse brain matrix.  The 2 mm section was snap 

frozen in liquid nitrogen on a microscope slide and the cochlear nucleus removed.  The 

central brainstem was discected into two sections consisting of the ventral brainstem 

(VBS), containing the SOC, and dorsal brainstem (DBS) followed by storage at –80 C.  

Pooled samples containing four brains each were homogenized in lysis buffer 

containing 20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 

1% Triton, 2.5 mM sodium pyrophosphate, 1 mM beta-glycerophosphate and 1 mM 

Na3VO4. (Cell Signaling Technology, Beverly, MA) for a total of n=4 separate 

homogenates per treatment group.  Additions were made giving final concentrations of 

0.5% Na-deoxycholate, 0.5% sodium dodecyl sulfate, 1µM okadaic acid, 1 mM 



 12 

phenylmethylsulfonyl fluoride, 0.1 mg/ml benzamidine, 8 µg/ml calpain inhibitors I and 

II and 1 µg/ml each leupeptin, pepstatin A and aprotinin.  Tissue was homogenized on ice 

in .6 ml of ice-cold lysis buffer, incubated on ice for 30 minutes followed by 30 seconds 

of sonication and centrifugation at 50,000 rpm for 20 minutes at 4˚C. The supernatant 

was assayed for protein concentration using the Bio-Rad Protein Assay (Bio-Rad #500-

0001, Hercules CA) and aliquots were stored at -80°C for use in Western analysis.  

Protein separation was done by SDS-PAGE using NuPAGE® 4-12% Bis-Tris 

polyacrylamide gels (Invitrogen, Carlsbad, CA).  Alliquated samples were mixed with 

distilled deionized water and NuPAGE® LDS sample buffer followed by 10 minutes at 

70˚C on a standard VWR® heatblock (West Chester, PA).  Gels were loaded with 20 µg 

of denatured protein per well along with 10 µl MagicMarkTM XP Western Protein 

Standard (Invitrogen, Carlsbad, CA) and 5 ul of KaleidoscopeTM Western Protein 

Standard (Bio-Rad).   Gels were run in NuPAGE® MOPS SDS Running Buffer 

(Invitrogen) with 500 µl of NuPAGE® Antioxidant (Invitrogen) for 55 min.  

Nitrocellulose membranes were pretreated in methanol for 15 seconds, washed in 

distilled water for three minutes and soaked in transfer buffer for 5 minutes prior to 

transfer.  Gels were transferred for 1 hr on ice at 100 V in a cold room using a Bio-Rad 

Power Pac 200 power supply (Bio-Rad). Post-transfer membranes were blocked in 5% 

dried nonfat milk, 0.1% tween and TBS for 1.5 hours at room temperature.  Membranes 

were washed in TBST 3 times for 10 minutes and incubated with primary antibody in 

blocking buffer overnight at 4˚C. The VMAT2 antibody was used at a dilution of 1to 

500.  Membranes were washed in TBST for 5 minutes and the secondary antibody 

(GAPDH) was applied at 1:2000 for 1 hr at room temp.   Membranes were washed three 
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times for 10 minutes in TBST and then visualized using an electrochemiluminescence 

western blotting detection reagents (Amersham Biosciences , Piscataway NJ). Exposures 

were taken in a Fuji film Intelligent Darkbox using a Fujifilm LAS-3000 camera 

(Fujifilm, Valhalla NY). 

 

Immunohistochemistry 

At P21, mice from all three treatment groups (n=5 per group) were deeply 

anesthetized and perfused transcardially with 4% Na-periodate-lysine-paraformaldehyde 

fixative (PLP, final concentrations 0.01M sodium periodate, 0.075M lysine, 2.1% 

paraformaldehyde, 0.037M phosphate).  Brains were removed and post-fixed for 2 hours 

at 4°C in PLP, rinsed 3 times for 10 minutes each in PBS and transferred to a 30% 

sucrose solution in PBS overnight at 4°C.  Brains were bisected between the forebrain 

and brainstem and tissue was embedded cut-side down into 1.5 cm square embedding 

cups filled with optimal cutting temperature (O.C.T.) compound.  Brains were then 

frozen in liquid nitrogen and stored at -20°C.  Ten micron tissue sections were cut on a 

Thermo Shandon Cryotome Cryostat (Thermo Shandon, Pittsburgh PA) and a one in 

three series of sections was collected for each brain.   

 Sections were rinsed in PBS, permeabilized for 30 minutes with 0.5% Triton X-

100 in PBS and then immunostained as previously described (Lurie and Durham, 2000; 

Wishcamper et al, 2001).  Briefly, tissue sections were blocked for 20 minutes with either 

4% Normal Goat Serum in TAB or 4% Normal Rabbit Serum and incubated with primary 

antibody for 24 hours in a humid chamber at 4° C.   The tissue was rinsed and then 

stained with the appropriate secondary antibody for 1 hr. at room temperature (Alexa 
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Fluor 488--1:400, or 488 Avidin biotin complex-1:500).   Sections were then rinsed and 

the slides coversliped with FluorSave (Calbiochem®, San Diego CA) and stored at 4° 

C. Antibody concentrations used for immunohistochemistry (IHC) were as follows: 

VGLUT1 1:1000, VGAT 1:200, VAChT 1:2000, DβH 1:800, TH 1:1200, 5-HT 1:10,000 

(please see below for detailed descriptions of the antibodies). 

For light microscopy and DAB immunohistochemistry, an additional set of 

control and Pb exposed brains were paraffin embedded as previous described ( Lurie and 

Durham, 2000; Wishcamper et al., 2001) and a one in six series was collected and 

mounted onto slides.  Tissue was then immunostained for synaptophysin (1:200) using 

the standard peroxidase anti-peroxidase procedure using the Vector ABC kit was used 

with appropriate secondary antibodies (Vector Laboratories Burlingame, CA) and 

visualized using 3-3’ diaminobenzidine (DAB, Sigma) in Tris buffer with 0.001M 

imidazole and 0.1% hydrogen peroxide as the chromagen.  Sections were then rinsed in 

water, dehydrated, and coverslipped using DPX mounting media (BDH Limited, Poole 

U.K.).   

  

Antibodies 

The mouse monoclonal against Glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH;  Mouse MAB374, Chemicon, Billerica, MA)  was raised against rabbit muscle.  

The antibody recognizes a single band of approximately 37 kD in western analysis in 

human, rat, mouse, chicken, frog, and fish {Phillips, 1997 #207}. 

 The rabbit polyclonal against Dopamine β-Hydrroxylase (DβH; Rabbit ab43868, 

Abcam, Cambridge MA) was raised from cow adrenal medulla.  In western analysis the 
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antibody detects a band of approximately 72 kDa (predicted molecular weight: 68 kDa) 

and reacts with mouse, rat and cow.  It exists in soluble form in chromaffin granules and 

also exists in a membrane bound form. 

 The rabbit polyclonal against serotonin (5-HT) was raised in rabbit against 

serotonin coupled to bovine serum albumin with paraformaldehyde (Cat. No. 20080, Lot 

No. 541317, ImmunoStar Inc., Hudson WI).   No cross-reactivity of serotonin antisera 

was seen with 5-hydroxytryptophan, 5-hydroxyindole-3-acetic acid, and dopamine 

(manufacturer’s specifications).   

 The rabbit polyclonal antibody against vesicular acetylcholine transporter 

(VAChT) was raised in rabbit against Strep-Tag fusion protein containing C-terminal 

amino acid residues 475-530 of VAChT from rat (Anti-VAChT, Cat. No. 139103, 

Synaptic Systems, Gottingen, Germany).  Specificity for VACht was tested by the 

manufacturer in rat and was characterized by Arvidsson et al 1997.  

 The rabbit polyclonal antibody against vesicular glutamate transporter 1 

(VGLUT1) was raised in rabbit against Strep-Tag fusion protein containing amino acid 

residues 456-560 of VGLUT1/BNPI from rat (Anti-VGLUT1, Cat. No. 135303, Synaptic 

Systems, Gottingen, Germany).  The antibody labels a band at 60 kDa in western blot as 

demonstrated by the manufacturer.  Specificity for VGLUT1 was tested by the 

manufacturer and is referenced in  Redecker et al 2003, Sherry et al 2003, Montana et al 

2004, Prange et al 2004, Dal Bo et al 2004.  

 The rabbit polyclonal antibody against vesicular glutamate transporter 2 

(VGLUT2) was raised in rabbit against Strep-Tag fusion protein containing amino acid 

residues 510-582 of VGLUT1/BNPI from rat (Anti-VGLUT2, Cat. No. 135402, Synaptic 
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Systems, Gottingen, Germany). The antibody labels a band at 65 kDa in western blot as 

demonstrated by the manufacturer.  Specificity for VGLUT2 was tested by the 

manufacturer and has been referenced in multiple papers (Land et al 2003, Redecker et al 

2003, Chen et al 2004, Hrabovszky et al 2004, Wojcik et al 2004, Dal bo G et al 2004, 

Montana et al 2004).  

The rabbit polyclonal antibody against vesicular monoamine transporter 2 

(VMAT2, C-terminus) was raised in rabbit against Synthetic peptide comprising the 

cytoplasmatic C-terminus of rat VMAT2.  (Anti-VMAT2, Cat. No. 135402, Synaptic 

Systems, Gottingen, Germany). The antibody labels a band at 65 kDa in western blot as 

demonstrated by the manufacturer. Specificity for VMAT2 was tested by the 

manufacturer and  described in multiple studies (Liu et al 1994, Nirenberg et al 1995, 

Nirenberg et al 1997, Colliver et al 2000, Holtje et al 2000, Jakobsen et al 2001).  

The rabbit polyclonal antibody against vesicular GABA transporter (VGAT) was 

raised in rabbit against synthetic peptide AEPPVEGDIHYQR (amino acid residues 75-87 

in rat) coupled to key-hole limpet hemocyanin via an added N-terminal cysteine (Anti-

VGAT, Cat. No. 131002, Synaptic Systems, Gottingen, Germany). The antibody labels a 

band at 57 kDa in western blot as demonstrated by the manufacturer.  Specificity for 

VGAT was tested by the manufacturer, and the antibody has been used in multiple 

studies (Takamori et al 2000, Geigerseder et al 2003, Wojcik et al 2004, Prange et al 

2004, Saito et al 2004, Harman et al 2004).  

The mouse monoclonal antibody against synaptophysin was raised in mouse 

against the SY38 epitope.  The antibody labels a band at 38 kDA in western blot as 

demonstrated by the manufacturer and is referenced in (Provoda 2000) 
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Tissue Analysis 

 All fluorescent slides were viewed at 60x magnification using a Nikon Eclipse TE 

300 confocal microscope and the BioRad Radiance 2000 Laser Scanning System 

connected to a Dell PC.  Images were collected and then converted from color tiff files to 

black and white, 12 bit tiff files. Two to five sections per animal were analyzed and the 

integrated optical density of the immunostaining was measured using MediaCybernetics 

Image-Pro software (Bethesda MD).  Integrated optical density measurements were used 

for quantification of immunostaining because it analyzes both the area of immunostained 

tissue that met threshold as well as the intensity of the immunostaining.  In summary, a 

threshold of immunostaining for each antibody was obtained for the appropriate area of 

interest (either LSO or MNTB) in two-five no Pb animals.  This set a control threshold 

that was unique for each antibody and was used as a comparison to the Pb treatment 

groups.  Immunostaining within three random areas (225 square microns - 225 square 

microns) within LSO and MNTB in control and Pb-exposed mice was then quantified 

and averaged.  Statistical differences in immunostaining between control and Pb exposed 

animals were analyzed using Synergy Software’s KaleidaGraph software (Reading PA) 

 Light microscopic brainstem sections (synaptophysin immunoreactivity) were 

viewed at 40x magnification with a Nikon E-800 attached to a CRI Nuance multi spectral 

imaging system (CRI, Inc., Woburn PA).  Images were analyzed with NIH image 1.62 in 

order to quantify the density of DAB staining.   Images containing the entire LSO and 

MNTB were captured on the screen and  the entire LSO and MNTB within each section 

was analyzed.  In control sections of LSO and MNTB, a threshold was set such that the 

reaction product for synpatophysin reached this threshold.  The number of pixels that 
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reached threshold was then calculated by the computer and the mean pixel count was 

calculated to determine a single value for all control and Pb exposed brains examined.  

Measurements were performed on two to three sections per animal. 

 

Statistical Analysis 

Data are expressed as mean ± SEM and were analyzed using one-way analysis of 

variance with Dunnet’s and/or Tukey’s post-hoc analyses where appropriate; p<0.05 was 

considered significant. 

 
 
Results 

Blood Lead Levels 

 The current study uses three different doses of Pb in the drinking water, the no Pb 

control, very low Pb (0.01mM), and low Pb (0.1mM).  The blood Pb levels (mean + 

SEM) for these mice are as follows:  No Pb control (1.36 + 0.14 µg/dL), very low Pb (8 + 

0.45  ), and low Pb (42.26 + 1.97 µg/dL).  None of our doses of Pb produced changes in 

size or body weight (data not shown) and the animals appeared unaffected by the Pb, 

indicating that the Pb doses used in this study can be considered a sub-toxic dose.   

Pb exposure results in decreased expression of VMAT-2, serotonin, and DβH   

 
 In order to determine whether developmental Pb exposure results in alterations in 

monoaminergic neurotransmitters, control and Pb-exposed brainstem sections were 

immunolabeled for the monoaminergic vesicular transporter, VMAT 2.  In control 

animals, VMAT 2 immunoreactivity is abundant in LSO (Figure 1A) but very little 

immunoreactivity is found in the medial nucleus of the trapezoid body (MNTB; data not 
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shown).  This is in agreement with previous studies, which have reported the presence of 

many 5-HT immunoreactive fibers in the murine LSO, and relatively sparse numbers of 

5-HT immunopositive fibers in MNTB (Thompson and Hurley 2004).    

Developmental Pb exposure results in a significant decrease in VMAT 2 

immunoreactivity in both the very low and low Pb mice.  Figure 1 illustrates the dramatic 

decrease in VMAT immunoreactivity within the LSO in Pb-treated mice compared to 

controls, and quantification of the immunostaining reveals a 33% decrease in the VMAT 

2 staining. However, Pb exposure does not result in a significant decrease of VMAT 2 

within the entire brainstem.  Western analysis reveals a trend towards decreased VMAT 2 

protein in the brainstem but this decrease is not significant (Figure 2).   

 In order to determine if Pb exposure changes the expression of other 

neurotransmitter transporters such as VGLUT 1, VGAT, and VAChT, brainstem sections 

were immunolabeled with antibodies to the appropriate transporter protein.  Glutamate is 

the major excitatory neurotransmitter that is used by the auditory system and we found 

robust immunostaining for VGLUT 1 in both the LSO and MNTB in control mice 

(Figure 3).  This immunostaining was not changed by Pb exposure (Figures 3 and 5), 

indicating that Pb does not significantly alter glutamate expression within the auditory 

brainstem.  Similarly, immunostaining for VGAT and VAChT was not changed with Pb 

exposure, suggesting that both gaba-ergic and cholinergic expression levels remain 

unaffected by Pb (Figures 4 and 5).  It should be noted that VGAT expression is high in 

MNTB and not detectable in LSO, while VAChT expression is found in LSO (Yao and 

Godfrey 1998).   
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In summary, Pb exposure decreased the expression of VMAT 2 within LSO but not 

VGLUT 1, VGAT, or VAChT.  Therefore, it appears that monoaminergic 

neurotransmitters systems within brainstem auditory nuclei are particularly vulnerable to 

low levels of Pb.  Monamines such as dopamine, serotonin and norepeniphrine are 

transported into synaptic vesicles by VMAT 2 (Gopalakrishan et al, 2007).  In order to 

determine whether Pb decreases expression of all monoamines, tissue sections were 

immunolabeled with antibodies to tyrosine hydroxylase (TH, a marker for dopamine), 

dopamine beta-hydroxylase (DβH, a marker for noradrenalin) and sertonin (5-HT).  

Tyrosine hydroxylase converts tyrosine to L-DOPA, a precursor for dopamine, and is 

also the rate-limiting step in dopamine synthesis (Pan, Berman et al. 2006; Kaushik, 

Gorin et al. 2007).   TH immunostaining is commonly used as a marker for dopamine.  

Dopamine beta hydroxylase converts dopamine to noradrenalin in synaptic vesicles and 

is routinely used as a marker for noradrenalin expression within the brain, and has been 

shown to label varicosities within auditory pathways (Behrens, Schofield et al. 2002).    
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Figure 1. Pb treatment decreases VMAT2 expresssion in the LSO. 

D 
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Figure 1. Pb treatment decreases VMAT2 expresssion in the LSO.  A-C) Representative 

micrographs of immunofluorescent staining for VMAT2 in the LSO in No (A), Very Low 

(B), and Low (C) Pb mice reveal a decrease in immunoreactivity with Pb treatment 

(Arrows).  Quantification of staining for VMAT2 in the LSO reveals that this decrease is 

statistically significant (D).  Graphs illustrate mean + the standard error of the mean 

(SEM). (n=5 per group) *P < 0.05, One-way Anova with Tukey’s all pairs comparison. 

Bar = 50 µm for panels A-C. 
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Figure 2. Pb exposure does change VMAT2  expression levels in the entire ventral 
brainstem. 
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Figure 2. Pb exposure does change VMAT2  expression levels in the entire ventral 

brainstem.  A) Western analysis demonstrates no significant change in VMAT2.  B) 

Quantification of the western blots reveals no significant change in VMAT 2 with Pb 

exposure. Representative blots are shown above the quantification (n=4 separate 

homogenates; 4 brainstem/homogenate). The graphs illustrate mean + the standard error 

of the mean (SEM).  
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Figure 3. Pb exposure does not affect VGLUT1 expression levels in either LSO or 
MNTB. 
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Figure 3. Pb exposure does not affect VGLUT1 expression levels in either LSO or 

MNTB.  A-C) Immunofluorescent staining for VGLUT1 in the LSO in response to No 

(A), Very Low (B), and Low (C) Pb treatment shows no change in immunoreactivity with 

Pb exposure (arrows).  D-F) VGLUT1 immunostaining in the MNTB in response to No 

(D), Very Low (E), and Low (F) Pb exposure also demonstrates no change in expression 

levels (arrows). (n=5 per group). Bar = 50 µm for panels A-F. 
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Figure 4.  Pb treatment does not affect VAChT or VGAT expression levels in the SOC. 
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Figure 4.  Pb treatment does not affect VAChT or VGAT expression levels in the SOC.  

A-C) VACHT immunostaining in the LSO does not change in response to No (A), Very 

Low (B), and Low (C) Pb exposure (arrows).  D-F) Similarly, VGAT immunostaining in 

the MNTB does not differ among the No (D), Very Low (E), and Low (F) Pb groups 

(arrows). (n=5 per group). Bar = 50 µm for panels A-F. 
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Figure 5. Quantification of  immunostaining confirms that Pb exposure does not affect 
VGLUT1 (A and B), VGAT (C), or VACHT (D) expression levels in the SOC. 

A B 

C D 
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Figure 5. Quantification of  immunostaining confirms that Pb exposure does not affect 

VGLUT1 (A and B), VGAT (C), or VACHT (D) expression levels in the SOC.  Graphs 

illustrate mean + the standard error of the mean (SEM). (n=5 per group).  One-way 

Anova with Tukey’s all pairs comparison.  
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Figure 6 illustrates TH immunostaining in the LSO for all Pb treatment groups.  

Pb does not cause a decrease in TH immunostaining at either the very low or low dose of 

Pb (Figure 6), suggesting that dopamine expression does not change with Pb exposure.  

In contrast, immunoreactivity for both serotonin and DβH is significantly decreased with 

Pb (Figures 7 and 8).  Serotonin expression is decreased approximately 29% compared to 

controls in the very low Pb group while DβH expression is decreased approximately 30% 

in both the very low and the low Pb groups (Figures 7 and 8).     

 In order to determine whether the decreased expression of VMAT 2, serotonin, 

and DβH correlated with a loss of synapses in LSO, brainstem sections were 

immunolabeled with antibodies to the synaptic vesicle protein, synaptophysin.  Pb 

exposure results in a significant decrease in synaptophysin labeling within LSO (but not 

MNTB) that is similar in magnitude (39%) to the decreased expression of VMAT 2, 

serotonin and DβH (Figure 9 and10).  This is particularly significant because in the 

mouse, LSO but not MNTB receives serotonergic input and this pattern of innervation 

differs from that in other mammals (Thompson and Hurley 2004).  We also found little 

DβH staining in MNTB.  The fact that synaptophysin labeling decreases in LSO but not 

MNTB suggests the Pb-induced loss of DβH and serotonin immunoreactivity within LSO 

is correlated with loss of synapses.   
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Figure 6.  TH expression levels in the LSO are not altered with Pb treatment. 

D 
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Figure 6.  TH expression levels in the LSO are not altered with Pb treatment.  A-C) 

Immunofluorescent staining for TH in the LSO in response to No (A), Very Low (B), and 

Low (C) Pb treatment shows no change in immunoreactivity (arrows).  Quantification of 

TH immunostaining in the LSO confirms that Pb has not affect on TH immunostaining 

(D).  Graphs illustrate mean + the standard error of the mean (SEM). (n=5 per group).  

One-way Anova with Tukey’s all pairs comparison. Bar = 50 µm for panels A-C. 
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Figure 7. Pb treatment decreases 5-HT expression in the LSO. 
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Figure 7. Pb treatment decreases 5-HT expression in the LSO.   A-C) Immunoreactivity 

for 5-HT is decreased with both very low (B) and low (C) Pb compared to no Pb controls 

(A) (arrows). Quantification of 5-HT immunoreactivity in the LSO confirms that this 

decrease is statistically significant (D). The graphs illustrate mean + the standard error of 

the mean (SEM). (n=5 per group) *P < 0.05, One-way Anova with Tukey’s all pairs 

comparison. Bar = 50 µm for panels A-C.
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Figure 8. Pb decreases DβH expression in the LSO. 
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Figure 8. Pb decreases DβH expression in the LSO.  A-C) Pb decreases immunoreactivity 

for DβH in Very Low (B), and Low (C) Pb treatment groups compared to no Pb controls 

(A) (Arrows).  D) Quantification of staining for DβH in the LSO cofirms that this 

decrease is statistically significant. The graphs illustrate mean + the standard error of the 

mean (SEM). (n=5 per group) *P < 0.05, One-way Anova with Tukey’s all pairs 

comparison. Bar = 50 µm for panels A-C. 
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Figure 9.  Pb treatment decreases synaptophysin immunoreactivity within the LSO and 
but has no effect on synaptophysin staining in the MNTB. 
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Figure 9.  Pb treatment decreases synaptophysin immunoreactivity within the LSO but 

has no effect on synaptophysin staining in the MNTB.  A-C) Very low (B) and low (C) 

Pb results in decreased immunoreactivity for synaptophysin compared to no Pb controls 

(A) (arrows). In contrast, MNTB synaptophysin immunostaining remains unchanged 

from controls (D) with very low (E) and low (F) Pb treatment. Bar = 50 µm for panels A-

F. 
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Figure 10.  Pb treatment results in a significant decrease in synaptophysin 
immunoreactivity in the LSO but not the MNTB. 
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Figure 10.  Pb treatment results in a significant decrease in synaptophysin 

immunoreactivity in the LSO but not the MNTB.  A) Quantification of synaptophysin 

immunostaining in the LSO shows a significant decrease with Pb treatment.  B) In 

contrast, quantification of synaptophysin expression in the MNTB reveals no significant 

decrease with Pb treatment.  Graphs illustrate mean + the standard error of the mean 

(SEM). (n=4 per group) *P < 0.05 One-way Anova with Tukey’s all pairs comparison.  
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Discussion 

 The current study demonstrates that developmental exposure to very low levels of 

Pb results in decreased immunoreactivity for VMAT 2, serotonin, DβH, and 

synaptophysin within the LSO.  This effect appears to be specific for monoaminergic 

systems because no changes in protein expression level were observed for VGLUT1, 

VAChT, and VGAT within either LSO or MNTB, or the entire brainstem.   In addition, 

immunostaining for TH did not change with Pb exposure, suggesting that dopamine 

levels are not altered by Pb.  The loss of synpatophysin staining within LSO, but not 

MNTB, indicates that the decreased expression of VMAT 2, 5-HT, and DβH may be 

correlated with the loss of monoaminergic synapses.  It is significant that the magnitude 

of the decreased expression for the monoaminergic markers and for synaptophysin is 

approximately 30%, lending further support to the hypothesis that Pb exposure results in 

loss of monoaminergic synapses within LSO.  Indeed, preliminary studies in our 

laboratory suggest that Pb interferes with the loading of serotonin into synaptic vesicles.  

Double-labeling studies with serotonin and synaptophysin reveal that serotonin in the Pb 

exposed LSO is not localized within synaptic vesicles.   

 

The role of the serotonin in LSO  

The lateral superior olive forms part of the ascending auditory pathway to the 

midbrain and is thought to process interaural intensity cues for sound localization 

(Thompson 2006).  LSO neurons project to the inferior colliculus but a subset of neurons 
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located within the LSO project predominantly ipsilaterally and form synapses onto inner 

hair cells.  The functional role of this efferent system remains unknown but it has been 

hypothesized to modify or control binaural interactions, reduce the masking effects of 

background noise, protect the cochlea from noise-induced trauma, and alter the response 

of the cochlea to sound with changes in attention (Woods and Azeredo 1999);(Darrow, 

Maison et al. 2007).   In the adult mouse, both ascending and descending projections that 

originate in the LSO receive input from the 5-HT system but LSO ascending neurons use 

glutamate and glycine as neurotransmitters and are not considered serotonergic (Kelly 

and Caspary, 2005; Thompson, 2006).  

In addition, many 5-HT immunoreactive fibers are found in the inferior colliculus, 

a target for LSO neurons, and 5-HT has been shown to shift first-spike latencies, neuronal 

spike count, temporal precision, and the interspike interval of neurons in the inferior 

colliculus (Hurley and Pollak 2005).  Thus, serotonin is considered to refine the 

representation of acoustic stimuli within the IC. For example, in free-tailed bats, calls 

become more unambiguous and specific in the presence of serotonin (Hurley and Pollak 

1999). In addition, the acoustic startle response is increased with 5-HT depletion (Woods 

and Azeredo 1999).  

Most of the serotonergic fibers found in the IC originate in the dorsal and median 

raphe nuclei (Klepper and Herbert, 1991) and indeed, the majority of serotonergic 

neurons within the brain are found in the dorsal and median raphe nuclei, an area that 

shows high activity levels in awake and alert animals and decreased activity in inattentive 

or sleeping animals (Hurley and Pollak 2005). While serotonergic neurons innervate 



 44 

many areas of the brain including the auditory brainstem (Klepper and Herbert, 1991), 

the origin of the 5-HT fibers in LSO has not been fully defined. 

 Studies are currently underway in our laboratory to determine whether serotonin 

expression is decreased in other central auditory areas including the inferior colliculus.  

Preliminary results indicate that 5-HT immunoreactivity within the IC is reduced with Pb 

exposure, suggesting that Pb may reduce 5-HT expression within central auditory areas.  

It will be of importance to determine whether this decrease is restricted to auditory 

nuclei, or whether there is a decrease in 5-HT expression within raphe neurons 

themselves. 

 

Noradrenergic Neurons and the auditory system 

 Both noradrenalin (NA) and 5-HT have been shown to modify auditory neural 

activity.  NA applied directly to the cochlea results in increased absolute and masked 

auditory thresholds, indicating that NA is able to alter the ability of the auditory system to 

detect a signal in a noise background (Pickles, 1976).  Noradrenergic nerve endings have 

been found within all nuclei of the SOC and in the rat, these terminals have been shown 

to originate in the locus coeruleus (Mulders and Robertson 2001).  These NA terminals 

may influence the function of the lateral olivocochlear neurons, located in the LSO, that 

project to the inner hair cells within the cochlea.  While the function of these cells is still 

unknown, it is intriguing to hypothesize that the NA input to LSO may play a role in 

detecting a signal in a noise background, as well as to modulate attention during auditory 

processing.  Application of NA to auditory neurons has been shown suppress 

spontaneous firing rate to a greater extent than the stimulus evoked discharge in cortex, 
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suggesting that NA is able to increase the “signal to noise ratio” (reviewed in (Berridge 

and Waterhouse 2003)).  The NE system is thought to enhance cognitive function under 

“noisy” conditions and the presentation of extraneous auditory stimuli impairs sustained 

attention in rats with forebrain NE depletion, even though these same rats perform 

normally under non-distracting conditions (Berridge and Waterhouse 2003). 

 Our finding that Pb exposure reduces DβH immunostaining within LSO is 

intriguing and further studies are needed to determine whether this effect is restricted to 

auditory nuclei or  whether DβH immunostaining is decreased in other target regions of 

the locus coeruleus.  It is important to note that dysregulation of the locus coeruleous-NE 

system is associated with cognitive disorders such as attention deficit/hyperactivity 

disorder (ADHD), and low level Pb exposure has also been shown to be a risk factor for 

ADHD (Glotzer, Freedberg et al. 1995; Berridge and Waterhouse 2003{Breier, 2003 #45; 

Braun, Kahn et al. 2006). 

 

Pb exposure and the Monoaminergic System  

 Our finding that Pb exposure alters the monoaminergic system is consistent with 

previous work on the effects of Pb on the CNS.   Numerous studies have shown 

decreased function of monoamine oxidase (MAO) following exposure to Pb as well as 

reduced NE and 5-HT levels in the brain (Devi, Reddy et al. 2005; Jaya Prasanthi, 

Hariprasad Reddy et al. 2005).  However, the mechanism by which Pb reduces NA and 5-

HT remains unknown.  The current study demonstrates that Pb exposure reduces the 

expression of VMAT 2, the transporter that loads monamines into vesicles.  The 

decreased expression of VMAT 2 might result in a short-term decrease in levels of 5-HT 
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and NE within the cytosol of synaptic endings, exposing them to increased degradation, 

and a long-term reduction in expression levels.  We also found that Pb exposure results in 

decreased expression of the synaptic vesicle protein, synaptophysin, within LSO but not 

MNTB.  This suggests that Pb is targeting the monoaminergic system because there is 

synaptic loss within LSO, but not MNTB, a nucleus that does not receive a large 

monaminergic input.  Our preliminary studies indicate that in the Pb-exposed LSO, the 

remaining 5-HT is not localized to synaptic vesicles, lending support to the hypothesis 

that Pb interferes with the transport of 5-HT into synaptic vesicles.  Alternatively, we 

cannot at this time rule out the possibility that Pb exposure might delay the development 

of monoaminergic synapses in LSO and the decreased expression of VMAT 2, 5-HT, and 

NE could be due to delayed development of these synapses.   Future studies will address 

this issue. 

 In summary, the present study demonstrates that low level Pb exposure during 

development results in decreased immunoreactivity for VMAT 2, DβH, 5-HT, and 

synapotophysin within the murine LSO.  Other neurotransmitter systems do not appear to 

be affected by Pb treatment, as VGLUT1, VGAT, and VAChT immunoreactivity remain 

unchanged following developmental Pb exposure.  The decrease in synaptophysin 

immunoreactivity within LSO but not MNTB suggests that there is a loss of 

monoaminergic synapses.  However, additional studies are needed to confirm that it is the 

monoaminergic synapses that are decreased with Pb exposure.  Finally, the mechanism 

by which Pb affects the monoaminergic system remains to be elucidated.   Clearly, 

further studies are needed to define the mechanism by which Pb affects VMAT 2 and the 
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monoaminergic system and to determine whether the effect of Pb is restricted to auditory 

nuclei or affects all serotonergic and noradrenergic targets. 

 
 

  

 
 
Extended Discussion 

 The current study quantifies decreases in protein expression of VMAT2, DβH, 5-

HT and synaptophysin in low-level Pb exposed mice. The cause of these alterations in the 

LSO is still not known but there are several possible mechanisms.  One intriguing 

mechanism involves Pb’s inhibitory actions on CREB and Sp1 that could lead to 

alterations in the transcription of VMAT2.  Inhibition of CREB could also affect DβH   

and the combination of decreased transcription of VMAT2 and DβH with Pb exposure 

might be a mechanism by which Pb induces decreased protein expression within the 

monoaminergic system. 

 

 Alterations of CREB and Sp1 by lead 

CREB (c-AMP response element binding protein) is a leucine zipper transcription 

factor responsible for transcribing many neuronal survival genes.  In relation to the 

current study CREB is important for its ability to transcribe VMAT2 and its inhibition 

with Pb exposure.  Pb, through a mechanism described later, causes the inactivation of 

CREB by dephosphorylating it.  CREB phosphorylation occurs at the serine-133 residue 

and can be the result of many parallel pathways, but the CREB phosphorylation pathway 

that occurs with Pb’s toxicity relies on intracellular Ca2+ homeostasis (Toscano, 
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McGlothan et al. 2003).  Ca2+ has two major pathways for phosphorylating CREB.  

Intracellular calcium can bind to Ca2+ binding protein calmodulin (CaM), which can then 

activate CaM kinase I, CaM kinase II, and CaM kinase IV, all of which can phophorylate 

CREB.  Ca2+ can also activate the Ras/ERK pathway, which leads to phosphorylation of 

CREB (Lonze and Ginty 2002; Wang, Fibuch et al. 2007).  Pb can substitute for Ca++, 

and thus is positioned to potentially interfere with the phosphorylation of CREB.  In 

addition,  Pb can lower levels of intracellular calcium due to inactivation of NMDA 

receptors in glutamanergic neurons and  result in decreased CREB phosphorylation.   A 

decrease in CREB phosphorylation has been shown to result in lowered gene 

transcription (Toscano, Hashemzadeh-Gargari et al. 2002; Toscano, McGlothan et al. 

2003; Toscano and Guilarte 2005).  

CREB transcription has many ties to the current study.  Phosphorylation of CREB 

has been shown to take place in both the LSO and MNTB nuclei of the SOC following 

unilateral cochlear ablation (Mo, Suneja et al. 2006).  VMAT2 has a CRE coding site that 

is conserved in rat, mouse, and human, for which CREB is a proven transcription factor 

(Takahashi and Uhl 1997; Gerhard, Neumayer et al. 2001; Lonze and Ginty 2002; 

Zanner, Gratzl et al. 2002; Prinz, Zanner et al. 2003). Interestingly, VMAT2 has binding 

sites for both CREB and Sp1 and both activation sites are needed for transcriptional 

activity, implicating a role for Sp1(Takahashi and Uhl 1997; Watson, Deavall et al. 1999; 

Gerhard, Neumayer et al. 2001).  In addition, VMAT2 transcription occurs with increased 

levels of intracellular calcium, supporting the hypothesis that Ca++ activation of CREB 

plays a role in VMAT transcription (Watson, Deavall et al. 1999).  It should be noted that 
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DβH also has CRE coding sequences that could modulate protein expression levels 

(Lonze and Ginty 2002). 

 The effects of Pb on the Zn finger protein, Sp1, could also play a role in VMAT2 

transcription (Takahashi and Uhl 1997; Gerhard, Neumayer et al. 2001).  Pb directly 

competes with Zn in Sp1 binding and has a greater affinity for the Zn-binding site than 

Zn does (Basha, Wei et al. 2003).  At very low levels, Pb increases Sp1 binding to DNA, 

but with chronic Pb treatment, Sp1 binding has been shown to significantly decrease by 

postnatal day 20 in rat hippocampus resulting in inhibited transcription (Basha, Wei et al. 

2003).  This may be one mechanism by which VMAT2 expression is decreased in our 

studies.  In summary Pb2+ can produce transcriptional alterations by interfering with the 

transcriptional factors CREB and Sp1 in an inhibitory manner and this could possibly 

affect the transcription of both VMAT 2 and DβH.  We saw no changes in VGLUT1, 

VGAT, and VACHT expression and it is important to not that CREB has not been 

implicated in the transcription of these proteins.   Only VGAT has binding sites for Sp1 

(Ebihara, Obata et al. 2003) but if the effect of Pb on CREB is playing a significant role 

in the auditory brainstem, then  VMAT2 is the only protein we might expect to show any 

significant change with Pb treatment.   

 

Lead and tyrosine hydroxylase 

Further investigation into the changes on the monoaminergic system showed no 

decrease in tyrosine hydroxylase protein level.  Tyrosine hydroxylase converts tyrosine to 

L-Dopa, a precursor for dopamine, and is also the rate-limiting step in dopamine 

synthesis (Pan, Berman et al. 2006; Kaushik, Gorin et al. 2007).   TH immunostaining is 
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commonly used as a marker for dopamine and is also expressed in noradrenergic fibers.  

Interestingly, TH is also regulated by CREB in a similar method to VMAT2 and DβH 

(Sabban, Hebert et al. 2004; Shah, Nankova et al. 2006).   Likewise TH possesses a 

similar neuron specific silencing factors, repressor element 1 (RE1), to DβH making it 

dificult to determine the reason for the differential regulation in the current study (Kim, 

Yang et al. 1998; Kim, Yang et al. 2006).  Noradrenergic fibers are not only dependent 

on TH but it is also the rate-limiting step.   Interestingly,  another study has shown 

decreases in TH activity in rat brain following chronic Pb treatment but whole brain 

homogenate was used and the exposure differed from the current study (Jadhav 1997).   It 

should be noted that the current study did not look for TH activity but TH protein 

expression, this expression was not changed by Pb treatment in noradrenergic fibers of 

the LSO.  However, we cannot rule out the possibility that Pb affected TH activity. 

 

Lead and the serotonergic system 

 Pb has also been shown to cause changes in serotonin within the brain  A study by 

Antonino et al. demonstrated 5-HT decreases in the hippocampus, hypothalamus, 

cerebellum, and striatum following Pb exposure through dams milk during gestation in 

male rats (Antonio and Leret 2000).  In contrast, Leret et al. 2002 found an increase in 5-

HT in the mediobasal hypothalamus and rostral neostiatum and an increase in the ratio 

products of 5-HIAA to 5-HT in the dorsal hippocampus and mediobasal hypothalamus 

using a similar experimental protocol to Antonino et al, 2000.   Another study by Kala et 

al. demonstrated that Pb exposed rats had 5-HT decreases in the nucleus accumbens, 

frontal cortex, and brainstem but showed no changes in striatum, hypothalamus and 
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hippocampus over a 90 day period (Kala and Jadhav 1995).  Further, a study by 

Szczerbak showed no changes in 5-HT levels in striatum or prefrontal cortex in 12-week-

old rats (Szczerbak, Nowak et al. 2007).  Interestingly, Jaya Prrasanthi et al. found 

several brain regions that had increased 5-HT levels in a 0.2% Pb treatment group and 

decreased levels in a 1% Pb treatment group (Jaya Prasanthi, Hariprasad Reddy et al. 

2005).  It is clear that 5-HT can be modulated by Pb but the direction of change is 

dependent on species, age, and treatment regime. 

The results found in the current study mostly correlate with several previous 

studies by showing decreases expression for proteins of the monoaminergic system 

including VMAT 2,  noradrenalin and serotonin.  The dephosphorylation of CREB by Pb 

result in decreased expression of VMAT 2.  Decreased expression of VMAT 2 might 

result in a short-term increase in levels of 5-HT and NE within the cytosol of synaptic 

endings, exposing them to increased degradation, and a long-term reduction in expression 

levels.  A long-term reduction in expression levels would significantly alter auditory 

neurotransmission in the brain.  

The serotonergic neurotransmitter system significantly modifies auditory 

signaling in the brain.  The serotonergic system also innervates most of the ascending 

auditory pathway and is able to modulate auditory signaling (Hurley and Pollak 1999).  

Serotonergic innervation of the SOC originates in the dorsal raphe nuclei; an area that has 

its highest levels of activity in awake and alert animals and lowest levels of activity in 

unfocused or sleeping animals (Hurley and Pollak 1999).   It has been previously shown 

that alterations in the serotonergic inputs from the raphe nuclei to the inferior colliculi 

can alter complex species-specific vocalizations (Hurley, Thompson et al. 2002; 
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Thompson and Hurley 2004; Hall and Hurley 2007).  Serotonin has been shown to 

modulate neuronal spike count, first-spike latency, temporal precision, and the interspike 

interval, all of which may alter temporal processing (Hurley and Pollak 2005). In the 

cochlear nucleus, 5-HT application has been shown to inhibit spontaneously active 

neurons (Ebert and Ostwald 1992).  5-HT levels as measured by HPLC, increased as the 

intentsity of white noise increased in the cochlear nucleus (Cransac, Cottet-Emard et al. 

1998).   Several studies have investigated the signal altering effects of serotonin in 

auditory transmission.  Latency, one of the most important modulatory effects, can vary 

in effect with stimulation characteristics.  For example, in some echolocating bats the 

wide range of latencies of neurons in the inferior colliculus is responsible for calculating 

target range and location of sound (Hurley and Pollak 1999).  More specifically serotonin 

refines the representation of acoustic stimuli.  In free-tailed bats, calls become more 

unambiguous and specific in the presence of serotonin (Hurley and Pollak 1999).  

Further, the acoustic startle response is increased with 5-HT depletion.  Pb alters many of 

the same auditory temporal characteristics as serotonin,  providing a link between 

serotonin and the behavioral deficits caused by Pb (Woods and Azeredo 1999). 

 

Lead and the noradrenergic system 

The noradrenergic fibers of the LSO showed a large decrease in DβH staining in 

both the very low and low treatment groups in the current study.  Previous studies have 

found both increases and decreases in DβH following Pb exposure.  The Antonino group 

found decreases in noradrenalin in the cerebellum, striatum and hypothalamus, but found 

no change in the hippocampus following Pb exposure through dams milk during gestation 
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in male rats (Antonio and Leret 2000).  A later study by Devi et al. showed decreases in 

noradrenalin levels in the cerebral cortex, hippocampus and cerebellum of rats exposed to 

1% Pb but found no changes at 0.2% Pb in drinking water at postnatal day 21(Devi, 

Reddy et al. 2005).  Similarly, Prasanthi et al. found several brain regions with increases 

in noradrenalin levels in 0.2% Pb treatment group and decreases in the 1% Pb treatment 

group.   Another study showed no changes in noradrenalin levels in striatum or prefrontal 

cortex in 12-week-old rats exposed to low levels of Pb through dams milk (Szczerbak, 

Nowak et al. 2007). The problem once again remains the lack of a consistent model in 

these Pb exposure studies.  

The noradrenergic system is aligned with serotonin in terms of neuronal 

modulation.  In general, stimulation of noradrenergic fibers has a depressive effect on 

auditory neurons.  This resuls in lowered levels of spontaneous firing, while maintaining 

the neuronal response to specific synaptic input.  The end result is an  increased signal to 

noise ratio (Berridge and Waterhouse 2003).  Further, noradrenalin has been shown to 

enhance auditory temporal contrast by using phasic alteration of neuronal activity to 

selectively increase tone stimuli and inhibit tonic auditory response components (Kossl 

and Vater 1989).  In some instances noradrenergic neurons enhanced the efficacy of both 

excitatory and inhibitory inputs. One study showed systemic and local injections of 

noradrenalin to the cochlear nucleus increased frequency selectivity of neuronal 

responses, demonstrating the ability of noradrenalin to extract a signal out of noise 

background (Cransac, Cottet-Emard et al. 1998).     

 DβH is the protein that converts dopamine to noradrenalin inside noradrenergic 

synaptic vesicles.  Primarily, the effect of a decrease in DβH would be less readily 



 54 

releasable noradrenalin and DβH is commonly used as a marker for noradrenalin.   

Decreased VMAT2 would also reduce the amount of dopamine that reaches the interior 

of synaptic vesicles resulting in less dopamine that can be converted to noradrenalin.  

Another factor is Cu2+, a divalent cation similar to Pb, that has the ability to inhibit the v-

ATPase activity, lowering the proton concentration gradient that is needed to drive 

VMAT2 co-transport (Wimalasena, Wiese et al. 2007).  Pb could possibly mimic Cu2+ 

and also inhibit v-ATPase activity, which would mean less noradrenalin in the synaptic 

vesicle pool.  Less noradrenalin would mean more spontaneous firing, less noradrenalin 

for phasic transmission, and a lowered signal to noise ratio of auditory nerves.  

Postsynapticaly, Pb has also been reported decrease β-adrenergic receptor density (Kala 

and Jadhav 1995; Tsao, Yu et al. 2000).  

Noradrenergic fibers have two characteristic releasing patterns, tonic and phasic.  

Tonic activity consists of sustained, low-frequency and regular discharge patterns that 

change most notably with sleep wake cycles.  Phasic activity, in contrast, consists of 

short latency, brief burst action potentials followed by prolonged suppression of 

discharge activity and are characteristic of overt attending to a novel stimulus within a 

particular environmental location (Berridge and Waterhouse 2003).  Further phasic 

activity is weaker in times of lowered tonic discharge levels and lower levels of vigilance 

(Berridge and Waterhouse 2003).  Previous studies have shown noradrenalin’s enhancing 

action is restricted to phasic neuronal activity at the onset of tone stimuli (Kossl and 

Vater 1989).  A phasic response could easily be hindered by depletion of readily 

releasable noradrenalin .  While the role of noradrenalin in the LSO has not been defined, 

it is possible that Pb could alter the noradrenergic systems phasic responses, resulting in 
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lowered attention to novel stimuli.  This is descriptive of ADHD and might explain in 

part why Pb is a risk factor for ADHD. 

 

Lead and monoamine oxidase 

 Another area of interest is monoamine oxidase activity in Pb exposed animals.  

Several studies using different models have shown decreases in monoamine oxidase 

activity (Devi, Reddy et al. 2005; Jaya Prasanthi, Hariprasad Reddy et al. 2005).  In 

contrast, Leret et al. shows an increase in the degradation product for both dopamine and 

5-HT in several brain regions following Pb exposure (Leret, Garcia-Uceda et al. 2002).  

This would imply increased function or increased protein expression for monoamine 

oxidase.  The current study did not determine the activity of monoamine oxidase but 5-

HT decreases could be caused by increased degradation as a result of decreased vesicular 

storage.  Future studies will investigate Pb-induced changes in the activity of MAO 

should be investigated in our system. 

In summary, the decrease in VMAT2 protein expression levels following Pb 

exposure could be the result of CREB-induced changes in VMAT 2 transcription.    

Lowered expression of VMAT2 could in turn alter noradrenalin and serotonin storage in 

synaptic vesicles. The effects on noradrenalin would be further increased by the 

decreases in the noradrenalin-synthesizing enzyme, DβH, which would decrease the 

readily releasable pool of noradrenalin.  The decrease in storage of neurotransmitters 

leaves them open for degradation in the cytosol further reducing expression levels and 

altering synaptic transmission.  The decrease within the monoaminergic system in LSO is 

correlated with synaptic loss as measured by synaptophysin immunohistochemistry.   The 
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resulting reduction in monoaminergic transmission could cause alterations in auditory 

temporal processing that include a decreased signal to noise ratio, and could explain 

many of the behavioral effects of developmental Pb exposure. 
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